A291722
Number T(n,k) of permutations p of [n] such that in 0p the sum of all jumps equals k + n; triangle T(n,k), n >= 0, 0 <= k <= n*(n-1)/2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 1, 6, 6, 5, 4, 1, 1, 1, 10, 20, 20, 26, 15, 15, 6, 5, 1, 1, 1, 15, 50, 70, 105, 106, 104, 90, 65, 51, 27, 21, 7, 6, 1, 1, 1, 21, 105, 210, 350, 497, 554, 644, 567, 574, 420, 386, 238, 203, 105, 85, 35, 28, 8, 7, 1, 1
Offset: 0
T(4,0) = 1: 1234.
T(4,1) = 6: 1243, 1324, 1342, 2134, 2314, 2341.
T(4,2) = 6: 1432, 2143, 2431, 3214, 3241, 3421.
T(4,3) = 5: 1423, 2413, 3124, 3412, 4321.
T(4,4) = 4: 3142, 4213, 4231, 4312.
T(4,5) = 1: 4123.
T(4,6) = 1: 4132.
T(5,5) = 15: 15234, 25134, 31542, 35124, 41235, 42153, 42531, 43152, 45123, 53214, 53241, 53421, 54213, 54231, 54312.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 3, 1, 1;
1, 6, 6, 5, 4, 1, 1;
1, 10, 20, 20, 26, 15, 15, 6, 5, 1, 1;
1, 15, 50, 70, 105, 106, 104, 90, 65, 51, 27, 21, 7, 6, 1, 1;
- Alois P. Heinz, Rows n = 0..50, flattened
- R. W. Kenyon, D. B. Wilson, Double-dimer pairings and skew Young diagrams, The Electronic Journal of Combinatorics 18(1) #P130, 2011.
- J. S. Kim, K. Mészáros, G. Panova, and D. B. Wilson. Dyck tilings, increasing trees, descents, and inversions, Journal of Combinatorial Theory A 122:9-27, 2014.
-
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
add(b(u-j, o+j-1)*x^(j-1), j=1..u)+
add(b(u+j-1, o-j)*x^(j-1), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n)):
seq(T(n), n=0..10);
-
(* Generating function for tiles for Dyck tilings above the zigzag path of order n *)
(* Computed by looking at descents in the insertion sequence for the Dyck-tiling-ribbon bijection, described in the Kim-Meszaros-Panova-Wilson reference *)
(* Since it's above the zigzag, all insertion positions are even *)
(* When the second argument is specified, refines by position of last insertion *)
tilegen[n_, sn_] := tilegen[n, sn] = If[n == 0 || n == 1, 1,
Sum[tilegen[n - 1, j] If[j >= sn, t^(j - sn + 1), 1] //
Expand, {j, 0, 2 (n - 2), 2}]
];
tilegen[n_] := tilegen[n + 1, 2 n];
T[n_, k_] := Coefficient[tilegen[n], t, k]; (* David B. Wilson, Dec 14 2018 *)
A098928
Number of cubes that can be formed from the points of a cubical grid of n X n X n points.
Original entry on oeis.org
0, 1, 9, 36, 100, 229, 473, 910, 1648, 2795, 4469, 6818, 10032, 14315, 19907, 27190, 36502, 48233, 62803, 80736, 102550, 128847, 160271, 197516, 241314, 292737, 352591, 421764, 501204, 592257, 696281, 814450, 948112, 1098607, 1267367
Offset: 1
For n = 3 there are 8 cubes of volume 1 and 1 cube of volume 8; thus a(3)=9. - _José María Grau Ribas_, Mar 15 2014
a(6)=229 because we can place 15^2 cubes in a 6 X 6 X 6 cubical grid with their edges parallel to the faces of the grid, plus 4 cubes of edge 3 with a vertex in each face of the lattice and the other two vertices on a diagonal.
- Baitian Li, Table of n, a(n) for n = 1..10000 (terms 1..101 from E. J. Ionascu and R. A. Obando)
- E. J. Ionascu and R. A. Obando, Counting all cubes in {0,1,...,n}^3, arXiv:1003.4569 [math.NT], 2010.
- Eugen J. Ionascu and Andrei Markov, Platonic solids in Z^3, Journal of Number Theory, Volume 131, Issue 1, January 2011, Pages 138-145.
- Eugen J. Ionascu and R. A. Obando, Cubes in {0,1,...,N}^3, INTEGERS, 12A (2012), #A9. - From _N. J. A. Sloane_, Feb 05 2013
- I. Larrosa, SMSU Problem Corner.
- Baitian Li, C++ program for A098928
-
Needs["Quaternions`"];
(* Initialize variables *)
R = 20;
NN = 1010;
(* Quaternion operations *)
test[q_Quaternion] :=
Module[{unit, res, a, b, c, u, v, w, p},
If[Round[Norm[q]] > R, Return[]];
If[q == Quaternion[0, 0, 0, 0], Return[]];
unit = Quaternion[0, 1, 0, 0];
res = q ** unit ** Conjugate[q];
a = Abs[res[[2]]] + Abs[res[[3]]] + Abs[res[[4]]];
unit = Quaternion[0, 0, 1, 0];
res = q ** unit ** Conjugate[q];
b = Abs[res[[2]]] + Abs[res[[3]]] + Abs[res[[4]]];
unit = Quaternion[0, 0, 0, 1];
res = q ** unit ** Conjugate[q];
c = Abs[res[[2]]] + Abs[res[[3]]] + Abs[res[[4]]];
For[i = 1, i <= (R - 1)/Max[a, b, c], i++,
If[SquareFreeQ[i], {u = a*i;
v = b*i;
w = c*i;
p = Max[u, v, w] + 1;
coe[[p + 1, 4]] += (1);
coe[[p + 1, 3]] -= (u + v + w);
coe[[p + 1, 2]] += (u*v + v*w + w*u);
coe[[p + 1, 1]] -= (u*v*w)}]]];
(* Set up coefficient matrix *)
coe = ConstantArray[0, {NN, 4}];
(* Loop through quaternions *)
rt = Ceiling[Sqrt[R]] + 1;
For[s = -rt, s <= rt, s++,
For[x = -rt, x <= rt, x++,
For[y = -rt, y <= rt, y++,
For[z = -rt, z <= rt, z++, test[Quaternion[s, x, y, z]];
test[Quaternion[s + 0.5, x + 0.5, y + 0.5, z + 0.5]];]]]];
newCoe = coe;
newCoe[[2 ;; ;; 2]] = coe[[2 ;; ;; 2]]/2;
(* Calculate and output results *)
For[i = 2, i <= R + 1, i++, ans = 0;
For[j = 4, j >= 1, j--, newCoe[[i, j]] += newCoe[[i - 1, j]];
ans = ans*(i - 1) + newCoe[[i, j]];
];
Print[i - 1, " ", ans/24];];
(* Haomin Yang, Aug 29 2023 *)
A305653
Expansion of Product_{k>=1} 1/(1 - x^k)^((k+1)*binomial(k+2,3)/2).
Original entry on oeis.org
1, 1, 7, 27, 98, 323, 1085, 3471, 10998, 33874, 102737, 305849, 897899, 2597822, 7423408, 20957775, 58524868, 161741013, 442705279, 1200718351, 3228796864, 8611973548, 22793714865, 59887897679, 156252738062, 404964879419, 1042884107691, 2669317020743, 6792321636929
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d^2*
(d+2)*(d+1)^2/12, d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Jun 07 2018
-
nmax = 28; CoefficientList[Series[Product[1/(1 - x^k)^((k + 1) Binomial[k + 2, 3]/2), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 28; CoefficientList[Series[Exp[Sum[x^k (1 + x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1)^2 (d + 2)/12, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]
A108648
a(n) = (n+1)^2*(n+2)^3*(n+3)/24.
Original entry on oeis.org
1, 18, 120, 500, 1575, 4116, 9408, 19440, 37125, 66550, 113256, 184548, 289835, 441000, 652800, 943296, 1334313, 1851930, 2527000, 3395700, 4500111, 5888828, 7617600, 9750000, 12358125, 15523326, 19336968, 23901220, 29329875, 35749200
Offset: 0
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, no. 24).
- Colin Barker, Table of n, a(n) for n = 0..1000
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, no. 24).
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
[(n+1)^2*(n+2)^3*(n+3)/24: n in [0..30]]; // G. C. Greubel, Oct 28 2022
-
a:=(n+1)^2*(n+2)^3*(n+3)/24: seq(a(n),n=0..36);
-
Table[(n+1)^2*(n+2)^3*(n+3)/24, {n,0,30}] (* G. C. Greubel, Oct 28 2022 *)
-
Vec((1 + 11*x + 15*x^2 + 3*x^3) / (1 - x)^7 + O(x^30)) \\ Colin Barker, Apr 22 2020
-
[(n+1)^2*(n+2)^3*(n+3)/24 for n in (0..30)] # G. C. Greubel, Oct 28 2022
A208950
a(4*n) = n*(16*n^2-1)/3, a(2*n+1) = n*(n+1)*(2*n+1)/6, a(4*n+2) = (4*n+1)*(4*n+2)*(4*n+3)/6.
Original entry on oeis.org
0, 0, 1, 1, 5, 5, 35, 14, 42, 30, 165, 55, 143, 91, 455, 140, 340, 204, 969, 285, 665, 385, 1771, 506, 1150, 650, 2925, 819, 1827, 1015, 4495, 1240, 2728, 1496, 6545, 1785, 3885, 2109, 9139, 2470, 5330, 2870, 12341, 3311, 7095, 3795, 16215, 4324
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,4,0,0,0,-6,0,0,0,4,0,0,0,-1).
Cf.
A000034,
A000292,
A002415,
A051724,
A060819,
A061037,
A107711,
A138190,
A145979,
A176672,
A176895.
-
[Binomial(n+1,3)*GCD(n+2,4)/4: n in [0..50]]; // G. C. Greubel, Sep 20 2018
-
CoefficientList[Series[(x^2 + x^3 + 5 x^4 + 5 x^5 + 31 x^6 + 10 x^7 + 22 x^8 + 10 x^9 + 31 x^10 + 5 x^11 + 5 x^12 + x^13 + x^14)/((1 - x)^4 (1 + x)^4 (1 + 4 x^2 + 6 x^4 + 4 x^6 + x^8)), {x, 0, 47}], x] (* Bruno Berselli, Mar 11 2012 *)
-
A208950(n) := block(
[a,npr] ,
if equal(mod(n,4), 0) then (
a : n/12*(n^2-1)
) else if equal(mod(n,2),0) then (
a : (n-1)*n*(n+1)/6
) else (
npr : (n-1)/2,
a : npr*(npr+1)*n/6
) ,
return(a)
)$ /* R. J. Mathar, Mar 10 2012 */
-
vector(50, n, n--; binomial(n+1,3)*gcd(n+2,4)/4) \\ G. C. Greubel, Sep 20 2018
A217476
Coefficient triangle for the square of the monic integer Chebyshev T-polynomials A127672.
Original entry on oeis.org
4, 0, 1, 4, -4, 1, 0, 9, -6, 1, 4, -16, 20, -8, 1, 0, 25, -50, 35, -10, 1, 4, -36, 105, -112, 54, -12, 1, 0, 49, -196, 294, -210, 77, -14, 1, 4, -64, 336, -672, 660, -352, 104, -16, 1, 0, 81, -540, 1386, -1782, 1287, -546, 135, -18, 1, 4, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1
Offset: 0
The triangle begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 4
1: 0 1
2: 4 -4 1
3: 0 9 -6 1
4: 4 -16 20 -8 1
5: 0 25 -50 35 -10 1
6: 4 -36 105 -112 54 -12 1
7: 0 49 -196 294 -210 77 -14 1
8: 4 -64 336 -672 660 -352 104 -16 1
9: 0 81 -540 1386 -1782 1287 -546 135 -18 1
10: 4 -100 825 -2640 4290 -4004 2275 -800 170 -20 1
...
n=2: R(2,x) = -2 + y, R(2,x)^2 = 4 -4*y + y^2, with y=x^2.
n=3: R(3,x) = 3*x - x^3, R(3,x)^2 = 9*y - 6*y^2 +y^3, with y=x^2.
T(4,1) = 8*(-1)^3*binomial(5,3)/5 = -16.
T(4,0) = 2 + 8*(-1)^4*binomial(4,4)/4 = 4.
T(n,1) = (-1)^(n-1)*2*n*(n+1)!/((n-1)!*2!*(n+1)) = -((-1)^n)*n^2 = A162395(n), n >= 1.
T(n,2) = (-1)^n*A002415(n), n >= 0.
T(n,3) = -(-1)^n*A040977(n-3), n >= 3.
T(n,4) = (-1)^n*A053347(n-4), n >= 4.
T(n,5) = -(-1)^n*A054334(n-5), n >= 5.
- E Hetmaniok, P Lorenc, S Damian, et al., Periodic orbits of boundary logistic map and new kind of modified Chebyshev polynomials in R. Witula, D. Slota, W. Holubowski (eds.), Monograph on the Occasion of 100th Birthday Anniversary of Zygmunt Zahorski. Wydawnictwo Politechniki Slaskiej, Gliwice 2015, pp. 325-343.
A047835
a(n) = Product_{i=1..n} ((i+4)*(i+5)*(i+6)*(i+7))/(i*(i+1)*(i+2)*(i+3)).
Original entry on oeis.org
1, 70, 1764, 24696, 232848, 1646568, 9343620, 44537922, 184225041, 677352676, 2254684432, 6892441920, 19571505408, 52101067968, 131018862096, 313203587004, 715536058545, 1569305708586, 3316911815140, 6778924352200, 13435361082000
Offset: 0
- O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241. [Annotated scanned copy]
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 25.
-
seq(binomial(n,n-1)*binomial(n+1,n-2)*binomial(n+2,n-3)*binomial(n+3,n-4)/(10*4!), n=4..24); # Zerinvary Lajos, May 29 2007
-
Table[Product[Times@@((i+Range[4,7])/(i+Range[0,3])),{i,n}],{n,0,20}] (* Harvey P. Dale, Nov 03 2011 *)
A121306
Array read by antidiagonals: a(m,n) = a(m,n-1)+a(m-1,n) but with initialization values a(0,0)=0, a(m>=1,0)=1, a(0,1)=1, a(0,n>1)=0.
Original entry on oeis.org
2, 2, 3, 2, 5, 4, 2, 7, 9, 5, 2, 9, 16, 14, 6, 2, 11, 25, 30, 20, 7, 2, 13, 36, 55, 50, 27, 8, 2, 15, 49, 91, 105, 77, 35, 9, 2, 17, 64, 140, 196, 182, 112, 44, 10, 19, 81, 204, 336, 378, 294, 156, 54, 100, 285, 540, 714, 672, 450, 210, 385, 825, 1254, 1386, 1122
Offset: 0
Array begins
2 2 2 2 2 2 2 2 2 ...
3 5 7 9 11 13 15 17 19 ...
4 9 16 25 36 49 64 81 100 ...
5 14 30 55 91 140 204 285 385 ...
6 20 50 105 196 336 540 825 1210 ...
7 27 77 182 378 714 1254 2079 3289 ...
Cf.
A119800,
A007318,
A006527,
A005408,
A000290,
A000330,
A002415,
A005585,
A040977,
A050486,
A053347,
A000027,
A000096,
A005581,
A005582,
A005583,
A005584.
-
=Z(-1)S+ZS(-1). The very first row (not included into the table) contains the initialization values: a(0,1)=1, a(0,n>=2)=0. The very first column (not included into the table) contains the initialization values: a(m>=1,0)=1. The value a(0,0)=0 does not enter into the table.
A169937
a(n) = binomial(m+n-1,n)^2 - binomial(m+n,n+1)*binomial(m+n-2,n-1) with m = 14.
Original entry on oeis.org
1, 91, 3185, 63700, 866320, 8836464, 71954064, 488259720, 2848181700, 14620666060, 67255063876, 281248448936, 1081724803600, 3863302870000, 12914469594000, 40680579221100, 121443493851225, 345280521733875, 938920716995625, 2451077240157000, 6162708489537600
Offset: 0
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; Prop. 8.4, case n=14.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences
A000012,
A000217,
A002415,
A006542,
A006857,
A108679,
A134288,
A134289,
A134290,
A134291,
A140925,
A140935,
A169937.
-
[(1/13)*Binomial(n+12,12)^2*(n+13)/(n+1): n in [0..20]]; // Bruno Berselli, Nov 09 2011
-
f:=m->[seq( binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1), n=0..20)]; f(14);
-
Table[Binomial[13+n,n]^2-Binomial[14+n,n+1]Binomial[12+n,n-1],{n,0,20}] (* Harvey P. Dale, Nov 09 2011 *)
-
a(n)=binomial(n+12,12)^2*(n+13)/(n+1)/13 \\ Charles R Greathouse IV, Nov 09 2011
A185913
Accumulation array of A185912, by antidiagonals.
Original entry on oeis.org
1, 4, 6, 10, 21, 20, 20, 48, 66, 50, 35, 90, 144, 160, 105, 56, 150, 260, 340, 330, 196, 84, 231, 420, 600, 690, 609, 336, 120, 336, 630, 950, 1200, 1260, 1036, 540, 165, 468, 896, 1400, 1875, 2170, 2128, 1656, 825, 220, 630, 1224, 1960, 2730, 3360, 3640, 3384, 2520, 1210, 286, 825, 1620, 2640, 3780, 4851, 5600, 5760, 5130, 3685, 1716, 364, 1056, 2090, 3450, 5040, 6664, 8036, 8820, 8700, 7480, 5214, 2366, 455
Offset: 1
Northwest corner:
1.....4.....10.....20.....35
6.....21....48.....90.....150
20....66....144....260....420
50....160...340....600....950
-
(* The program generates A185912 and its accumulation array A185913 *)
f[n_,k_]:=(k*n/6)(-2+3k+3n+2n^2);
TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* array A185912 *)
Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}];
FullSimplify[s[n,k]] (* formula for A185913 *)
TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* array A185913 *)
Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
Comments