Original entry on oeis.org
1, 1, 6, 12, 120, 360, 5040, 20160, 362880, 1814400, 39916800, 239500800, 6227020800, 43589145600, 1307674368000, 10461394944000, 355687428096000, 3201186852864000, 121645100408832000, 1216451004088320000, 51090942171709440000, 562000363888803840000
Offset: 1
Cf.
A000290,
A000330,
A002415,
A005408,
A005585,
A029651,
A040977,
A050486,
A053347,
A054333,
A054334,
A057788.
A208508
Triangle of coefficients of polynomials u(n,x) jointly generated with A208509; see the Formula section.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 9, 1, 1, 16, 6, 1, 25, 20, 1, 1, 36, 50, 8, 1, 49, 105, 35, 1, 1, 64, 196, 112, 10, 1, 81, 336, 294, 54, 1, 1, 100, 540, 672, 210, 12, 1, 121, 825, 1386, 660, 77, 1, 1, 144, 1210, 2640, 1782, 352, 14, 1, 169, 1716, 4719, 4290, 1287, 104, 1, 1
Offset: 1
First five rows:
1
1...1
1...4
1...9....1
1...16...6
First five polynomials u(n,x):
1
1 + x
1 + 4x
1 + 9x + x^2
1 + 16x + 6x^2
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208508 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208509 *)
A212891
Rectangular array: (row n) = b**c, where b(h) = h, c(h) = (n-1+h)^2, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 6, 4, 20, 17, 9, 50, 46, 34, 16, 105, 100, 84, 57, 25, 196, 190, 170, 134, 86, 36, 336, 329, 305, 260, 196, 121, 49, 540, 532, 504, 450, 370, 270, 162, 64, 825, 816, 784, 721, 625, 500, 356, 209, 81, 1210, 1200, 1164, 1092, 980, 830, 650, 454, 262
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....6....20....50....105....196...336
4....17...46....100...190....329...532
9....34...84....170...305....504...784
16...57...134...260...450....721...1092
25...86...196...370...625....980...1456
...
T(5,1) = (1)**(25) = 25
T(5,2) = (1,2)**(25,36) = 1*36+2*25 = 86
T(5,3) = (1,2,3)**(25,36,49) = 1*49+2*36+3*25 = 196
-
b[n_] := n; c[n_] := n^2
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A212891 *)
d = Table[t[n, n], {n, 1, 40}] (* A213436 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A024166 *)
A334881
Number of squares in 3-dimensional space whose four vertices have coordinates (x,y,z) in the set {1,...,n}.
Original entry on oeis.org
0, 0, 6, 54, 240, 810, 2274, 5304, 10752, 19992, 34854, 57774, 91200, 139338, 206394, 296832, 417120, 575556, 779238, 1037514, 1359792, 1760694, 2251362, 2845140, 3554976, 4404876, 5416278, 6605946, 7996896, 9621678, 11500962, 13667772, 16143552, 18973608, 22190406
Offset: 0
For n = 5, one such square has vertex set {(2,1,1), (5,4,1), (4,5,5), (1,2,5)}.
a(13)-a(20) from
Peter Kagey, Jul 29 2020 via Mathematics Stack Exchange link
Terms a(21) and beyond from
Zachary Kaplan, Sep 01 2020, via Mathematics Stack Exchange link
A338323
a(n) is the number of regular k-gons in three dimensions with all k vertices (x,y,z) in the set {1,2,...,n}^3.
Original entry on oeis.org
0, 0, 14, 138, 640, 2190, 6042, 13824, 28400, 53484, 94126, 156462, 248568, 380802, 564242, 813528, 1146472, 1581936, 2143878, 2857194, 3749240, 4854942, 6210442, 7856340, 9832056, 12194784, 15002678, 18312486, 22183672, 26693382, 31909362, 37916916, 44802728
Offset: 0
For the 3 X 3 X 3 grid, the a(3) = 138 regular polygons are A102698(3-1) = 80 triangles, A334881(3) = 54 squares, and A338322(3) = 4 hexagons.
An example of each shape, listed by the coordinates of their vertices:
Triangle: (1,2,1), (2,1,3), (3,3,2)
Square: (1,1,1), (2,1,1), (2,2,1), (1,2,1)
Hexagon: (1,1,2), (1,2,3), (2,1,1), (2,3,3), (3,2,1), (3,3,2)
The two-dimensional case is given by
A002415.
A072819
Variance of time for a random walk starting at 0 to reach one of the boundaries at +n or -n for the first time.
Original entry on oeis.org
0, 0, 8, 48, 160, 400, 840, 1568, 2688, 4320, 6600, 9680, 13728, 18928, 25480, 33600, 43520, 55488, 69768, 86640, 106400, 129360, 155848, 186208, 220800, 260000, 304200, 353808, 409248, 470960, 539400, 615040, 698368, 789888, 890120, 999600
Offset: 0
a(2)=8 since for a random walk with absorbing boundaries at +2 or -2, the probability of first reaching a boundary at time t=2 is 1/2, at t=4 is 1/4, at t=6 is 1/8, at t=8 is 1/16, etc., giving a mean of 2/2 + 4/4 + 6/8 + 8/16 + ... = 4 and a variance of 2^2/2 + 4^2/4 + 6^2/8 + 8^2/16 + ... - 4^2 = 24 - 16 = 8.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf.
A000290 (i.e., n^2) for mean time.
A072818(n)=sqrt(a(
A001079(n))) attempts to identify the integer standard deviations.
A079034
Determinant of M(n), the n X n matrix defined by m(i,i) = 1, m(i,j) = i-j.
Original entry on oeis.org
1, 1, 2, 7, 21, 51, 106, 197, 337, 541, 826, 1211, 1717, 2367, 3186, 4201, 5441, 6937, 8722, 10831, 13301, 16171, 19482, 23277, 27601, 32501, 38026, 44227, 51157, 58871, 67426, 76881, 87297, 98737, 111266, 124951, 139861, 156067, 173642, 192661, 213201, 235341
Offset: 0
- Han Wang and Zhi-Wei Sun, Evaluations of three determinants, arXiv:2206.12317 [math.NT], 2022.
- Han Wang and Zhi-Wei Sun, Characteristic polynomials of the matrices with (j, k)-entry q^(j±k) + t, Bull. Australian Math. Soc. (2024). See references.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
LinearRecurrence[{5,-10,10,-5,1},{1,2,7,21,51},50] (* Harvey P. Dale, Aug 17 2014 *)
A081283
An interleaved sequence of pyramidal and polygonal numbers.
Original entry on oeis.org
0, 1, 1, 5, 6, 16, 20, 40, 50, 85, 105, 161, 196, 280, 336, 456, 540, 705, 825, 1045, 1210, 1496, 1716, 2080, 2366, 2821, 3185, 3745, 4200, 4880, 5440, 6256, 6936, 7905, 8721, 9861, 10830, 12160, 13300, 14840, 16170, 17941, 19481, 21505, 23276, 25576, 27600
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
-
A081283:=n->(2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(2*n^2+2*(5+(-1)^n)*n+27-11*(-1)^n)/1536: seq(A081283(n), n=0..80); # Wesley Ivan Hurt, Apr 18 2017
-
CoefficientList[Series[x (1 + x^3) / ((1 - x) (1 - x^2)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 07 2013 *)
A177877
Triangle in which row n is derived from (1,2,3,...,n) dot (n,n-1,...,1) with additive carryovers.
Original entry on oeis.org
1, 2, 4, 3, 7, 10, 4, 10, 16, 20, 5, 13, 22, 30, 35, 6, 16, 28, 40, 50, 56, 7, 19, 34, 50, 65, 77, 84, 8, 22, 40, 60, 80, 98, 112, 120, 9, 25, 46, 70, 95, 119, 140, 156, 165, 10, 28, 52, 80, 110, 140, 168, 192, 210, 220
Offset: 0
Row 2 = (3, 7, 10) = (1, 2, 3) dot (3, 2, 1) with carryovers, thus: (3 = 1*3; 7 = 2*2 + 3; 10 = 3*1 + 7).
First few rows of the array:
1, 4, 10, 20, 35,...
2, 7, 16, 30, 50,...
3, 10, 22, 40, 65,...
...
Example: row 1 is obtained by adding (1, 3, 6, 10, 15,...) termwise to (1, 4, 10, 20, 35,...).
First few rows of the triangle:
1;
2, 4;
3, 7, 10;
4, 10, 16, 20;
5, 13, 22, 30, 35;
6, 16, 28, 40, 50, 56;
7, 19, 34, 50, 65, 77, 84;
8, 22, 40, 60, 80, 98, 112, 120;
9, 25, 46, 70, 95, 119, 140, 156, 165;
10, 28, 52, 80, 110, 140, 168, 192, 210, 220;
...
A202674
Symmetric matrix based on (1,3,5,7,9,...), by antidiagonals.
Original entry on oeis.org
1, 3, 3, 5, 10, 5, 7, 18, 18, 7, 9, 26, 35, 26, 9, 11, 34, 53, 53, 34, 11, 13, 42, 71, 84, 71, 42, 13, 15, 50, 89, 116, 116, 89, 50, 15, 17, 58, 107, 148, 165, 148, 107, 58, 17, 19, 66, 125, 180, 215, 215, 180, 125, 66, 19, 21, 74, 143, 212, 265, 286, 265, 212
Offset: 1
Northwest corner:
1....3....5.....7.....9
3...10...18....26....34
5...18...35....53....71
7...26...53....84...116
9...34...71...116...165
-
U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[2 k - 1, {k, 1, 15}]];
L = Transpose[U]; M = L.U; TableForm[M]
m[i_, j_] := M[[i]][[j]];
Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
Comments