A158690
Expansion of the basic hypergeometric series 1 + (1 - exp(-t)) + (1 - exp(-t))*(1 - exp(-3*t)) + (1 - exp(-t))*(1 - exp(-3*t))*(1 - exp(-5*t)) + ... as a series in t.
Original entry on oeis.org
1, 1, 5, 55, 1073, 32671, 1431665, 85363615, 6646603073, 654896692351, 79656194515025, 11722538113191775, 2052949879753739873, 421931472111868912831, 100568330857984368195185
Offset: 0
G.f. A(x) = 1 + x + 5*x^2 + 55*x^3 + 1073*x^4 + 32671*x^5 + 1431665*x^6 + ...
- Vaclav Kotesovec, Table of n, a(n) for n = 0..170
- Hsien-Kuei Hwang, and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
- D. Zagier, Quantum modular forms, Quanta of Maths: Conference in honor of Alain Connes, Clay Mathematics Proceedings 11, AMS and Clay Mathematics Institute 2010, 659-675
-
max = 14; se = Series[1 + Sum[ Product[1 - E^(-(2*k - 1)*t), {k, 1, n}], {n, 1, max}], {t, 0, max}]; CoefficientList[se, t]*Range[0, max]! (* Jean-François Alcover, Mar 06 2013 *)
-
{a(n)=n!*polcoeff(sum(m=0, n, prod(k=1, m, 1-exp(-(2*k-1)*x+x*O(x^n)))), n)} \\ Paul D. Hanna, Aug 01 2012
-
{a(n)=n!*polcoeff(sum(m=0, n, prod(k=1, m, exp(k*x+x*O(x^n))-1)), n)} \\ Paul D. Hanna, Aug 01 2012
A000191
Generalized tangent numbers d(3, n).
Original entry on oeis.org
2, 46, 3362, 515086, 135274562, 54276473326, 30884386347362, 23657073914466766, 23471059057478981762, 29279357851856595135406, 44855282210826271011257762, 82787899853638102222862479246, 181184428895772987376073015175362, 463938847087789978515380344866258286
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Peter Luschny, Table of n, a(n) for n = 0..250
- Daniel Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967) 689-694.
- Daniel Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699.
- Daniel Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 690. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Tangent Number.
-
gf := (2*sin(t))/(2*cos(2*t) - 1): ser := series(gf, t, 26):
seq((2*n+1)!*coeff(ser, t, 2*n+1), n=0..23); # Peter Luschny, Oct 17 2020
a := n -> (-1)^n*(-6)^(2*n+1)*euler(2*n+1, 1/6):
seq(a(n), n = 0..13); # Peter Luschny, Nov 26 2020
-
(* Formulas from D. Shanks, see link, p. 690. *)
L[ a_, s_, t_:10000 ] := Plus@@Table[ N[ JacobiSymbol[ -a, 2k+1 ](2k+1)^(-s), 30 ], {k, 0, t} ]; d[ a_, n_, t_:10000 ] := (2n-1)!/Sqrt[ a ](2a/Pi)^(2n)L[ -a, 2n, t ] (* Eric W. Weisstein, Aug 30 2001 *)
A079144
Number of labeled interval orders on n elements: (2+2)-free posets.
Original entry on oeis.org
1, 1, 3, 19, 207, 3451, 81663, 2602699, 107477247, 5581680571, 356046745023, 27365431508779, 2494237642655487, 266005087863259291, 32815976815540917183, 4636895313201764853259, 743988605732990946684927
Offset: 0
Detlef Pauly (dettodet(AT)yahoo.de), Dec 27 2002
1 + x + 3*x^2 + 19*x^3 + 207*x^4 + 3451*x^5 + 81663*x^6 + 2602699*x^7 + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..260
- Peter Bala, Some S-fractions related to the expansions of sin(ax)/cos(bx) and cos(ax)/cos(bx)
- Graham Brightwell and Mitchel T. Keller, Asymptotic Enumeration of Labelled Interval Orders, arXiv:1111.6766 [math.CO], 2011.
- Anders Claesson, Mark Dukes and Martina Kubitzke, Partition and composition matrices, arXiv:1006.1312 [math.CO], 2010-2011.
- Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
- Don Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology, vol.40, pp.945-960 (2001); see p. 952.
- Yan X Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015.
Cf.
A022493 (unlabeled interval orders).
-
A002439 := proc(n) option remember; if n = 0 then 1; else (-4)^n-add((-9)^k*binomial(2*n+1,2*k)*procname(n-k),k=1..n+1) ; end if;end proc:
seq(1/(24^n)*add(binomial(n,k)*A002439(k), k = 0..n), n = 0..20); # Peter Bala, Dec 26 2021
-
nmax=20; rk=Rest[CoefficientList[Series[Sum[Product[1-1/(1+x)^j,{j,1,n}],{n,0,nmax}],{x,0,nmax}],x]]; Flatten[{1,Table[Sum[rk[[k]] * k! * StirlingS2[n,k],{k,1,n}],{n,1,nmax}]}] (* Vaclav Kotesovec, May 03 2014 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( subst( sum( i=0, n, prod( j=1, i, 1 - (1 - x + O(x^(n - i + 2)))^j )), x, 1 - exp( -x + x * O(x^n))), n))} /* Michael Somos, Apr 01 2012 */
A002437
a(n) = A000364(n) * (3^(2*n+1) + 1)/4.
Original entry on oeis.org
1, 7, 305, 33367, 6815585, 2237423527, 1077270776465, 715153093789687, 626055764653322945, 698774745485355051847, 968553361387420436695025, 1632180870878422847476890007, 3286322019402928956112227932705, 7791592461957309952817483706344167, 21485762937086358457367440231243675985
Offset: 0
a(4) = A000364(4) * (3^(2*4+1)+1)/4 = 1385 * (3^9+1)/4 = 1385 * 4921 = 6815585.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 75.
- J. W. L. Glaisher, Messenger of Math., 28 (1898), 36-79, see esp. p. 51.
- L. B. W. Jolley, Summation of Series, Dover, 2nd ed. (1961)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael E. Hoffman, Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences, The Electronic Journal of Combinatorics, vol. 6, no. 1, #R21, (1999).
-
Q:=proc(n) option remember; if n=0 then RETURN(1); else RETURN(expand((u^2+1)*diff(Q(n-1),u)+u*Q(n-1))); fi; end;
[seq(subs(u=sqrt(3),Q(2*n)),n=0..25)];
-
Table[Abs[EulerE[2 n]] (3^(2 n + 1) + 1) / 4, {n, 0, 30}] (* Vincenzo Librandi, Feb 07 2017 *)
A000498
Eulerian numbers (Euler's triangle: column k=4 of A008292, column k=3 of A173018).
Original entry on oeis.org
1, 26, 302, 2416, 15619, 88234, 455192, 2203488, 10187685, 45533450, 198410786, 848090912, 3572085255, 14875399450, 61403313100, 251732291184, 1026509354985, 4168403181210, 16871482830550, 68111623139600, 274419271461131, 1103881308184906, 4434992805213952
Offset: 4
There is one permutation of 4 with exactly 3 descents (4321).
There are 26 permutations of 5 with 3 descents: 15432, 21543, 25431, 31542, 32154, 32541, 35421, 41532, 42153, 42531, 43152, 43215, 43251, 43521, 45321, 51432, 52143, 52431, 53142, 53214, 53241, 53421, 54132, 54213, 54231, 54312. - Neven Juric, Jan 21 2010.
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 4..200
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
- F. N. Castro, O. E. González, and L. A. Medina, The p-adic valuation of Eulerian numbers: trees and Bernoulli numbers, 2014.
- E. T. Frankel, A calculus of figurate numbers and finite differences, American Mathematical Monthly, 57 (1950), 14-25. [Annotated scanned copy]
- J. C. P. Miller, Letter to N. J. A. Sloane, Mar 26 1971
- Nagatomo Nakamura, Pseudo-Normal Random Number Generation via the Eulerian Numbers, Josai Mathematical Monographs, vol. 8, p 85-95, 2015.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- J. Riordan, Review of Frankel (1950) [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Eulerian Number
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
- Index entries for linear recurrences with constant coefficients, signature (20,-175,882,-2835,6072,-8777,8458,-5204,1848,-288).
Cf.
A008292 (classic version of Euler's triangle used by Comtet (1974).)
Cf.
A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).)
-
[(6*4^n -6*(n+1)*3^n +3*n*(n+1)*2^n -(n-1)*n*(n+1))/6: n in [4..50]]; // G. C. Greubel, Oct 23 2017
-
[EulerianNumber(n,3): n in [4..50]]; // G. C. Greubel, Dec 07 2024
-
A000498:=proc(n); 4^n-(n+1)*3^n+1/2*(n)*(n+1)*2^n-1/6*(n-1)*(n)*(n+1); end:
-
LinearRecurrence[{20, -175, 882, -2835, 6072, -8777, 8458, -5204, 1848, -288}, {1, 26, 302, 2416, 15619, 88234, 455192, 2203488, 10187685, 45533450}, 30] (* Jean-François Alcover, Feb 09 2016 *)
Table[Sum[(-1)^k*Binomial[n+1,k]*(4-k)^n, {k,0,3}], {n,4,50}] (* G. C. Greubel, Oct 23 2017 *)
-
for(n=4,50, print1((6*4^n -6*(n+1)*3^n +3*n*(n+1)*2^n -(n-1)*n*(n+ 1))/6, ", ")) \\ G. C. Greubel, Oct 23 2017
-
from sage.combinat.combinat import eulerian_number
print([eulerian_number(n,3) for n in range(4,61)]) # G. C. Greubel, Dec 07 2024
A002111
Glaisher's G numbers.
Original entry on oeis.org
1, 5, 49, 809, 20317, 722813, 34607305, 2145998417, 167317266613, 16020403322021, 1848020950359841, 252778977216700025, 40453941942593304589, 7488583061542051450829, 1587688770629724715374457, 382218817191632327375004833
Offset: 1
G.f. = x + 5*x^2 + 49*x^3 + 809*x^4 + 20317*x^5 + 722813*x^6 + 34607305*x^7 + ...
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 76.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 1..254 (first 50 terms from T. D. Noe)
- Shaun Cooper, Cubic elliptic functions, Res. Lett. Inf. Math. Sci., Vol. 5 (2003), pp. 23-59, see page 30.
- Ira M. Gessel, On the Almkvist-Meurman Theorem for Bernoulli Polynomials, Integers (2023) Vol. 23, #A14.
- J. W. L. Glaisher, On a set of coefficients analogous to the Eulerian numbers, Proc. London Math. Soc., Vol. 31 (1899), pp. 216-235.
- René Gy, Bernoulli-Stirling Numbers, Integers, Vol. 20, (2020), #A67.
- J. C. P. Miller, Letter to N. J. A. Sloane, Mar 26 1971.
- N. J. A. Sloane, Transforms.
- Wikipedia, Bernoulli Polynomials.
- Index entries for sequences related to Glaisher's numbers
-
read transforms; t1 := (3/2)/(1+exp(x)+exp(-x)); series(t1,x,50): t2 := SERIESTOLISTMULT(t1); [seq(n*t2[n],n=1..nops(t5))];
-
s[n_] := CoefficientList[Series[(1/2)*(Sin[t/2]/Sin[3*(t/2)]), {t, 0, 32}], t][[n + 1]]*n!*(-1)^Floor[n/2]; a[n_] := (-1)^n*(6*n + 3)*s[2*n]; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Mar 22 2011, after Michael Somos' formula *)
a[ n_] := If[ n < 1, 0, (2 n + 1)! SeriesCoefficient[ 3 / (2 + 4 Cos[x]), {x, 0, 2 n}]]; (* Michael Somos, Jun 01 2012 *)
-
{a(n) = if( n<1, 0, n*=2; (n+1)! * polcoeff( 3 / (2 + 4 * cos( x + O(x^n))), n))}; /* Michael Somos, Feb 26 2004 */
-
a(n)=if(n<1,0,-(-1)^n*sum(i=0,2*n,binomial(2*n+1,i)*bernfrac(i)*3^i)) \\ Benoit Cloitre, May 01 2002
-
def A002111(n):
return add(add(add(((-1)^(n+1-v)/(j+1))*binomial(2*n+1,k)*binomial(j,v)*(3*v)^k for v in (0..j)) for j in (0..k)) for k in (0..2*n+1))
[A002111(n) for n in (1..16)] # Peter Luschny, Jun 03 2013
A005799
Generalized Euler numbers of type 2^n.
Original entry on oeis.org
1, 1, 2, 10, 104, 1816, 47312, 1714000, 82285184, 5052370816, 386051862272, 35917232669440, 3996998043812864, 524203898507631616, 80011968856686405632, 14061403972845412526080, 2818858067801804443910144
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Peter Bala, Some S-fractions related to the expansions of sin(ax)/cos(bx) and cos(ax)/cos(bx)
- Shishuo Fu, Zhicong Lin, and Zhi-Wei Sun, Proof of several conjectures relating permanents to Combinatorial sequences, arXiv:2109.11506v3 [math.CO], 2021-2023.
- Shishuo Fu, Zhicong Lin, and Zhi-Wei Sun, Permanent identities, combinatorial sequences, and permutation statistics, Advances in Applied Mathematics, Volume 163, Part A, 102789 (2025).
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
- H. Prodinger, On Touchard's continued fraction and extensions: combinatorics-free, self-contained proofs , arXiv:1102.5186 [math.CO], 2011.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
-
T := proc(n, k) option remember;
if n < 0 or k < 0 then 0
elif n = 0 then euler(k, 1)
else T(n-1, k+1) - T(n-1, k) fi end:
a := n -> (-2)^n*T(n, n); seq(a(n), n=0..16); # Peter Luschny, Aug 23 2017
-
a[n_] := Sum[Binomial[n, i]Abs[EulerE[2i]], {i, 0, n}]/2^n
A002438
Multiples of Euler numbers.
Original entry on oeis.org
1, 5, 205, 22265, 4544185, 1491632525, 718181418565, 476768795646785, 417370516232719345, 465849831125196593045, 645702241048404020542525, 1088120580608731523115639305, 2190881346273790815462670984105
Offset: 1
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 75.
- Glaisher, J. W. L.; Messenger of Math., 28 (1898), 36-79, see esp. p. 51.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A208679
Kashaev's invariant for the (5,2)-torus knot (Solomon's seal knot).
Original entry on oeis.org
1, 71, 14641, 6242711, 4555133281, 5076970085351, 8024733763147921, 17074591123571719991, 47056485265721520250561, 163059403058191163396938631, 693897612604719894794535433201
Offset: 1
-
A208679 := proc(n) option remember; if n = 1 then 1; else (-4)^(n-1) - add((-25)^k*binomial(2*n-1,2*k)*procname(n-k),k=1..n) ; end if; end proc:
seq(A208679(n),n = 1..20) # Peter Bala, Dec 20 2021
A208679 := 5*10^(2*n-2)*(-1)^n*euler(2*n-1,3/10):
seq(A208679(n),n = 1..11); # Miles Wilson, Aug 05 2024
-
nmax = 20; Table[(CoefficientList[Series[1/2*Sin[2*x]/Cos[5*x], {x, 0, 2*nmax}], x] * Range[0, 2*nmax - 1]!)[[j]], {j, 2, 2*nmax + 1, 2}] (* Vaclav Kotesovec, Aug 30 2015 *)
-
my(x='x+O('x^30), v=Vec(serlaplace((1/2)*sin(2*x)/cos(5*x)))); vector(#v\2,n,v[2*n-1]) \\ Joerg Arndt, Aug 08 2024
A208681
Kashaev's invariant for the (9,2)-torus knot.
Original entry on oeis.org
1, 239, 160801, 222359759, 525750911041, 1898604115708079, 9723130520022672481, 67030256200148854573199, 598528825179130480174293121, 6719801498668147110144664875119, 92651189588518508157161032926540961
Offset: 1
-
A208681 := proc(n) option remember; if n = 1 then 1; else (-4)^(n-1) - add((-81)^k*binomial(2*n-1,2*k)*procname(n-k),k=1..n) ; end if; end proc:
seq(A208681(n),n = 1..20) # Peter Bala, Dec 25 2021
-
a[n_] := (2n-1)! SeriesCoefficient[(1/2)(Sin[2x]/ Cos[9x]), {x, 0, 2n-1}];
Table[a[n], {n, 1, 11}] (* Jean-François Alcover, Sep 23 2022 *)
Comments