A217094
Least index k such that A011540(k) >= 10^n.
Original entry on oeis.org
2, 2, 11, 182, 2621, 33572, 402131, 4619162, 51572441, 564151952, 6077367551, 64696307942, 682266771461, 7140400943132, 74263608488171, 768372476393522, 7915352287541681, 81238170587875112, 831143535290875991, 8480291817617883902, 86322626358560955101
Offset: 0
a(0) = 2, since A011540(2) = 10 >= 10^0.
a(1) = 2, since A011540(2) = 10 >= 10^1.
a(2) = 11, since A011540(11) = 100 >= 10^2, but A011540(10) = 90 < 10^2.
-
[2 +10^n -9^n -(9^n -1)/8: n in [0..50]]; // G. C. Greubel, Apr 18 2018
-
LinearRecurrence[{20,-109,90},{2,2,11},30] (* Harvey P. Dale, Aug 02 2015 *)
-
for(n=0,50, print1(2 +10^n -9^n -(9^n -1)/8, ", ")) \\ G. C. Greubel, Apr 18 2018
A218750
a(n) = (47^n - 1)/46.
Original entry on oeis.org
0, 1, 48, 2257, 106080, 4985761, 234330768, 11013546097, 517636666560, 24328923328321, 1143459396431088, 53742591632261137, 2525901806716273440, 118717384915664851681, 5579717091036248029008, 262246703278703657363377, 12325595054099071896078720
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 48*Self(n-1) - 47*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
Table[(47^n - 1)/46, {n, 0, 19}] (* Alonso del Arte, Nov 04 2012 *)
LinearRecurrence[{48, -47}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
-
A218750(n):=(47^n-1)/46$ makelist(A218750(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218750(n)=47^n\46
A002453
Central factorial numbers: 2nd subdiagonal of A008958.
Original entry on oeis.org
1, 35, 966, 24970, 631631, 15857205, 397027996, 9931080740, 248325446061, 6208571999575, 155218222621826, 3880490869237710, 97012589464171291, 2425317596203339145, 60632965641474990456, 1515824372664398367880
Offset: 0
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 36.
- G. C. Greubel, Table of n, a(n) for n = 0..710
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to factorial numbers
- Index entries for linear recurrences with constant coefficients, signature (35,-259,225).
Right-hand column 2 in triangle
A008958.
-
List([0..20],n->(5^(2*n+4)-3^(2*n+5)+2)/384); # Muniru A Asiru, Dec 20 2018
-
[(5^(2*n+4)-3^(2*n+5)+2)/384: n in [0..20]]; // G. C. Greubel, Jul 04 2019
-
A002453:=-1/(z-1)/(25*z-1)/(9*z-1); # Simon Plouffe (from his 1992 dissertation).
-
CoefficientList[Series[1/((1-x)(1-9x)(1-25x)),{x,0,20}],x] (* or *) LinearRecurrence[{35,-259,225},{1,35,966},20] (* Harvey P. Dale, Feb 25 2015 *)
-
vector(20, n, n--; (5^(2*n+4)-3^(2*n+5)+2)/384) \\ G. C. Greubel, Jul 04 2019
-
[(5^(2*n+4)-3^(2*n+5)+2)/384 for n in (0..20)] # G. C. Greubel, Jul 04 2019
A218726
a(n) = (23^n - 1)/22.
Original entry on oeis.org
0, 1, 24, 553, 12720, 292561, 6728904, 154764793, 3559590240, 81870575521, 1883023236984, 43309534450633, 996119292364560, 22910743724384881, 526947105660852264, 12119783430199602073, 278755018894590847680, 6411365434575589496641, 147461404995238558422744
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 24*Self(n-1)-23*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{24, -23}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(23^Range[0,20]-1)/22 (* Harvey P. Dale, Nov 09 2012 *)
-
A218726(n):=(23^n-1)/22$
makelist(A218726(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218726(n)=23^n\22
A218732
a(n) = (29^n - 1)/28.
Original entry on oeis.org
0, 1, 30, 871, 25260, 732541, 21243690, 616067011, 17865943320, 518112356281, 15025258332150, 435732491632351, 12636242257338180, 366451025462807221, 10627079738421409410, 308185312414220872891, 8937374060012405313840, 259183847740359754101361
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 30*Self(n-1)-29*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{30, -29}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218732(n):=(29^n-1)/28$
makelist(A218732(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
a(n)=29^n\28
A218733
a(n) = (30^n - 1)/29.
Original entry on oeis.org
0, 1, 31, 931, 27931, 837931, 25137931, 754137931, 22624137931, 678724137931, 20361724137931, 610851724137931, 18325551724137931, 549766551724137931, 16492996551724137931, 494789896551724137931, 14843696896551724137931, 445310906896551724137931, 13359327206896551724137931
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 31*Self(n-1) - 30*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{31, -30}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(30^Range[0,20]-1)/29 (* Harvey P. Dale, Nov 22 2022 *)
-
A218733(n):=floor((30^n-1)/29)$ makelist(A218733(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
A218733(n)=30^n\29
A218740
a(n) = (37^n - 1)/36.
Original entry on oeis.org
0, 1, 38, 1407, 52060, 1926221, 71270178, 2636996587, 97568873720, 3610048327641, 133571788122718, 4942156160540567, 182859777940000980, 6765811783780036261, 250335035999861341658, 9262396331994869641347, 342708664283810176729840, 12680220578500976539004081
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 38*Self(n-1)-37*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{38, -37}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218740(n):=(37^n-1)/36$
makelist(A218740(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218740(n)=37^n\36
A218744
a(n) = (41^n - 1)/40.
Original entry on oeis.org
0, 1, 42, 1723, 70644, 2896405, 118752606, 4868856847, 199623130728, 8184548359849, 335566482753810, 13758225792906211, 564087257509154652, 23127577557875340733, 948230679872888970054, 38877457874788447772215, 1593975772866326358660816, 65353006687519380705093457
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 42*Self(n-1)-41*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{42, -41}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218744(n):=(41^n-1)/40$
makelist(A218744(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218744(n)=41^n\40
A218746
a(n) = (43^n - 1)/42.
Original entry on oeis.org
0, 1, 44, 1893, 81400, 3500201, 150508644, 6471871693, 278290482800, 11966490760401, 514559102697244, 22126041415981493, 951419780887204200, 40911050578149780601, 1759175174860440565844, 75644532518998944331293, 3252714898316954606245600, 139866740627629048068560801
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 44*Self(n-1) - 43*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{44, -43}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
Join[{0},Accumulate[43^Range[0,20]]] (* Harvey P. Dale, Jan 27 2015 *)
-
A218746(n):=(43^n-1)/42$
makelist(A218746(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218746(n)=43^n\42
A353148
Decimal repunits written in base 9.
Original entry on oeis.org
0, 1, 12, 133, 1464, 16215, 178366, 2073137, 22814518, 252060710, 2772667811, 31610457022, 347715137243, 3835866520674, 43305642727525, 476363171113776, 5351104882252647, 58862154814780228, 658583714063682520, 7355531854711617721, 82021851512827806032
Offset: 0
Comments