A075414
Squares of A002279: a(n) = (5*(10^n - 1)/9)^2.
Original entry on oeis.org
0, 25, 3025, 308025, 30858025, 3086358025, 308641358025, 30864191358025, 3086419691358025, 308641974691358025, 30864197524691358025, 3086419753024691358025, 308641975308024691358025, 30864197530858024691358025, 3086419753086358024691358025, 308641975308641358024691358025
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
Original entry on oeis.org
0, 49, 5929, 603729, 60481729, 6049261729, 604937061729, 60493815061729, 6049382595061729, 604938270395061729, 60493827148395061729, 6049382715928395061729, 604938271603728395061729, 60493827160481728395061729, 6049382716049261728395061729, 604938271604937061728395061729
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
A075417
Squares of A002282: a(n) = (8*(10^n - 1)/9)^2.
Original entry on oeis.org
0, 64, 7744, 788544, 78996544, 7901076544, 790121876544, 79012329876544, 7901234409876544, 790123455209876544, 79012345663209876544, 7901234567743209876544, 790123456788543209876544, 79012345678996543209876544, 7901234567901076543209876544, 790123456790121876543209876544
Offset: 0
Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002
A075024
a(n) is the largest prime divisor of the number A173426(n) = concatenate(1,2,...,n-1,n,n-1,...,2,1); a(1) = 1.
Original entry on oeis.org
1, 11, 37, 101, 271, 37, 4649, 137, 333667, 12345678910987654321, 17636684157301569664903, 2799473675762179389994681, 2354041513534224607850261, 2068140300159522133, 498056174529497, 112240064764214229701, 4188353169004802474320231191377
Offset: 1
a(5) = 271 as 123454321 = 41*41*271*271.
a(25) = 12471243489559387823527232424981012432152516319410549 is the larger factor of the semiprime A173426(24) = A075023(25) * a(n).
-
Table[FactorInteger[FromDigits[Join[Flatten[IntegerDigits/@Range[ n]], Flatten[ IntegerDigits/@Range[n-1,1,-1]]]]][[-1,1]],{n,20}] (* Harvey P. Dale, May 20 2016 *)
-
a(n) = {if (n == 1, return (1)); s = ""; for (i=1, n, s = concat(s, Str(i));); forstep (i=n-1, 1, -1, s = concat(s, Str(i));); f = factor(eval(s)); f[#f~, 1];} \\ Michel Marcus, Jun 05 2014
-
A075024(n)=A006530(A173426(n)) \\ A006530 should provide efficient code and also covers the case n=1. - M. F. Hasler, Jul 29 2015
A057139
Odd number of digits palindrome based on sequential digits.
Original entry on oeis.org
1, 121, 12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321, 12345678987654321, 1234567890987654321, 123456789010987654321, 12345678901210987654321, 1234567890123210987654321, 123456789012343210987654321, 12345678901234543210987654321
Offset: 1
Alternative progression for n >= 10 compared with
A002477.
-
Array[FromDigits@ Join[#, Reverse@ Most@ #] &@ Mod[Range[#], 10] &, 15] (* Michael De Vlieger, Jan 28 2020 *)
-
a(n)={fromdigits(vector(2*n-1, i, if(i<=n, i, 2*n-i)%10))} \\ Andrew Howroyd, Jan 27 2020
A048411
Squares whose consecutive digits differ by 1.
Original entry on oeis.org
0, 1, 4, 9, 121, 676, 12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321, 12345678987654321
Offset: 1
-
a048411 n = a048411_list !! (n-1)
a048411_list = filter ((== 1) . a010052) a033075_list
-- Reinhard Zumkeller, Feb 21 2012
-
Select[Range[0, 10^7]^2, Or[# == 0, IntegerLength@ # == 1, Union@ Abs@ Differences@ IntegerDigits@ # == {1}] &] (* Michael De Vlieger, Nov 25 2016 *)
-
from sympy.ntheory.primetest import is_square
def gen(d, s=None):
if d == 0: yield tuple(); return
if s == None:
yield from [(i, ) + g for i in range(1, 10) for g in gen(d-1, s=i)]
else:
if s > 0: yield from [(s-1, ) + g for g in gen(d-1, s=s-1)]
if s < 9: yield from [(s+1, ) + g for g in gen(d-1, s=s+1)]
def afind(maxdigits):
print(0, end=", ")
for d in range(1, maxdigits+1):
for g in gen(d, s=None):
t = int("".join(map(str, g)))
if is_square(t): print(t, end=", ")
afind(17) # Michael S. Branicky, Sep 26 2021
A249605
Dissectible numbers in the sense of Gunjikar and Kaprekar.
Original entry on oeis.org
9, 18, 27, 36, 45, 54, 63, 72, 81, 108, 117, 126, 135, 144, 153, 162, 207, 216, 225, 234, 243, 306, 315, 324, 405
Offset: 1
9*12321 = 009*12321 = 0110889 (a=b=0, c=9, x=1, y=8).
162*121 = 19602 (here x=9, y=0).
162*12321 = 1996002 (again x=9, y=0).
- K. R. Gunjikar and D. R. Kaprekar, Theory of Demlo numbers, J. Univ. Bombay, Vol. VIII, Part 3, Nov. 1939, pp. 3-9. [Annotated scanned copy]
A048412
a(n)^2 is a square whose consecutive digits differ by 1.
Original entry on oeis.org
0, 1, 2, 3, 11, 26, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111
Offset: 1
A093140
Expansion of (1-6*x)/((1-x)*(1-10*x)).
Original entry on oeis.org
1, 5, 45, 445, 4445, 44445, 444445, 4444445, 44444445, 444444445, 4444444445, 44444444445, 444444444445, 4444444444445, 44444444444445, 444444444444445, 4444444444444445, 44444444444444445, 444444444444444445, 4444444444444444445, 44444444444444444445, 444444444444444444445
Offset: 0
-
CoefficientList[Series[(1-6x)/((1-x)(1-10x)),{x,0,30}],x] (* or *) LinearRecurrence[{11,-10},{1,5},30] (* or *) Join[{1},Table[FromDigits[PadLeft[{5},n,4]],{n,30}]] (* Harvey P. Dale, Dec 17 2022 *)
Original entry on oeis.org
1, 112, 11223, 1122334, 112233445, 11223344556, 1122334455667, 112233445566778, 11223344556677889, 1122334455667789000, 112233445566778900111, 11223344556677890011222, 1122334455667789001122333, 112233445566778900112233444, 11223344556677890011223344555, 1122334455667789001122334455666
Offset: 0
Comments