A144151
Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) = number of ways an undirected cycle of length k can be built from n labeled nodes.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 3, 1, 5, 10, 10, 15, 12, 1, 6, 15, 20, 45, 72, 60, 1, 7, 21, 35, 105, 252, 420, 360, 1, 8, 28, 56, 210, 672, 1680, 2880, 2520, 1, 9, 36, 84, 378, 1512, 5040, 12960, 22680, 20160, 1, 10, 45, 120, 630, 3024, 12600, 43200, 113400, 201600, 181440
Offset: 0
T(4,3) = 4, because 4 undirected cycles of length 3 can be built from 4 labeled nodes:
.1.2. .1.2. .1-2. .1-2.
../|. .|\.. ..\|. .|/..
.3-4. .3-4. .3.4. .3.4.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 6, 4, 3;
1, 5, 10, 10, 15, 12;
...
T(2n,n) gives
A006963(n+1) for n>=3.
-
T:= (n,k)-> if k<=2 then binomial(n,k) else mul(n-j, j=0..k-1)/k/2 fi:
seq(seq(T(n,k), k=0..n), n=0..12);
-
t[n_, k_ /; k <= 2] := Binomial[n, k]; t[n_, k_] := Binomial[n, k]*(k-1)!/2; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 18 2013 *)
CoefficientList[Table[1 + n x (2 + (n - 1) x + 2 HypergeometricPFQ[{1, 1, 1 - n}, {2}, -x])/4, {n, 0, 10}], x] (* Eric W. Weisstein, Apr 06 2017 *)
A070968
Number of cycles in the complete bipartite graph K(n,n).
Original entry on oeis.org
0, 1, 15, 204, 3940, 113865, 4662231, 256485040, 18226108944, 1623855701385, 177195820499335, 23237493232953516, 3605437233380095620, 653193551573628900289, 136634950180317224866335, 32681589590709963123092160, 8863149183726257535369633856
Offset: 1
Sharon Sela (sharonsela(AT)hotmail.com), May 17 2002
-
seq(simplify((1/4)*hypergeom([1, 2, 2-n, 2-n], [3], 1)*(n-1)^2*n^2), n=1..20); # Robert Israel, Jan 09 2018
-
Table[Sum[Binomial[n, k]^2*k!*(k - 1)!, {k, 2, n}]/2, {n, 1, 17}]
Table[n^2 (HypergeometricPFQ[{1, 1, 1 - n, 1 - n}, {2}, 1] - 1)/2, {n, 20}] (* Eric W. Weisstein, Dec 14 2017 *)
-
for(n=1,50,print1(sum(k=2,n,binomial(n,k)^2 * k! * (k-1)!/2),","))
A286418
Array read by antidiagonals: T(n,m) is the number of (undirected) cycles in the rook graph K_n X K_m.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 7, 14, 14, 7, 37, 170, 312, 170, 37, 197, 2904, 13945, 13945, 2904, 197, 1172, 74779, 1241696, 3228524, 1241696, 74779, 1172, 8018, 2751790, 196846257, 1723178763, 1723178763, 196846257, 2751790, 8018
Offset: 1
Table starts:
================================================
m\n 1 2 3 4 5
--+---------------------------------------------
1 | 0 0 1 7 37 ...
2 | 0 1 14 170 2904 ...
3 | 1 14 312 13945 1241696 ...
4 | 7 170 13945 3228524 1723178763 ...
5 | 37 2904 1241696 1723178763 6198979538330 ...
...
A297670
Number of chordless cycles in the n-triangular graph.
Original entry on oeis.org
0, 0, 3, 27, 177, 1137, 7962, 62730, 555894, 5487894, 59740389, 710770989, 9174169647, 127661751951, 1904975487876, 30341995264356, 513771331466556, 9215499383108604, 174548332364310423, 3481204991988350223, 72920994844093190013, 1600596371590399670013
Offset: 2
From _Andrew Howroyd_, Jan 04 2018: (Start)
Vertices can be represented by a pair of integers with 12 being the same as 21.
a(4) = 3 because the possible cycles are: -12-23-34-41-, -12-24-43-31-, -13-32-24-41-.
a(5) = 27 because there are 15 cycles of length 4 and 12 cycles of length 5.
(End)
-
A297670List := proc(n) local A,R,f,i; A:=[0,0,0,6,54,354,2274]; R:=NULL;
f := i -> (24*(12*A[1]-33*A[2]+23*A[3]+3*A[4]-5*A[5])-(4*(90*A[1]-255*A[2]
+212*A[3]-26*A[4]-31*A[5]+16*A[6])+(-208*A[1]+618*A[2]-604*A[3]+197*A[4]
+15*A[5]-35*A[6]+(82*A[1]-257*A[2]+285*A[3]-137*A[4]+27*A[5]+6*A[6]+
(-20*A[1]+66*A[2]-83*A[3]+52*A[4]-18*A[5]+2*A[6]+(+2*A[1]-7*A[2]+10*A[3]
-8*A[4]+4*A[5]-A[6])*i)*i)*i)*i)*i)/((-24+(17+(i-6)*i)*i)*i);
for i from 1 to n do if i<7 then R:=R,A[i+1]/2 else A[1]:=A[2];A[2]:=A[3];
A[3]:=A[4];A[4]:=A[5];A[5]:=A[6];A[6]:=A[7];A[7]:=f(i); R:=R,A[7]/2 fi od;
R end: A297670List(22); # Peter Luschny, Jan 06 2018
-
Table[Sum[n!/(2 k (n - k)!), {k, 4, n}], {n, 2, 20}]
Table[n ((3 - 2 n) n + 6 HypergeometricPFQ[{1, 1, 1 - n}, {2}, -1] - 7)/12, {n, 2, 20}]
RecurrenceTable[{-(-1 + n) n (1 + n) + (4 + 2 (-1 + n)) a[n] + (-6 - 2 (-1 + n)) a[n + 1] + 2 a[n + 2] == 0, a[1] == 0, a[2] == 0}, a[n], {n, 2, 20}]
-
a(n)={sum(k=4, n, n!/(2*k*(n-k)!))} \\ Andrew Howroyd, Jan 04 2018
A234627
Numbers of undirected cycles in the n-sun graph.
Original entry on oeis.org
1, 3, 11, 44, 198, 1036, 6346, 45019, 364039, 3306553, 33328389, 369132782, 4456043300, 58230679722, 818965960156, 12334276322245, 198059886271741, 3377876368962559, 60978094460613103, 1161619710523459392
Offset: 1
- Andrew Howroyd and Vaclav Kotesovec, Table of n, a(n) for n = 1..420 (terms 3..50 from Andrew Howroyd; terms 1..2 corrected by _Georg Fischer_, Jan 20 2019)
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Sun Graph
-
Table[(2 - Binomial[n + 1, 2] + Sum[(k - 1)! (Binomial[n, k] + Sum[n 2^j Binomial[n - j - i - 1, j - 1] Binomial[i + j - 1, i] Binomial[n - 2 j - i, k - j]/j, {j, k}, {i, 0, n - j - k}]), {k, n}])/2, {n, 20}] (* Eric W. Weisstein, Dec 14 2017 *)
-
a(n) = (2 - binomial(n+1, 2) + sum(k=1, n, (k-1)! * (binomial(n, k) + sum(j=1, k, sum(i=0, n-j-k, n*(2^j)*binomial(n-j-i-1, j-1)*binomial(i+j-1, i)*binomial(n-2*j-i, k-j)/j)))))/2; \\ after formula; Michel Marcus, Mar 06 2016
A284947
Irregular triangle read by rows: coefficients of the cycle polynomial of the n-complete graph K_n.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 0, 4, 3, 0, 0, 0, 10, 15, 12, 0, 0, 0, 20, 45, 72, 60, 0, 0, 0, 35, 105, 252, 420, 360, 0, 0, 0, 56, 210, 672, 1680, 2880, 2520, 0, 0, 0, 84, 378, 1512, 5040, 12960, 22680, 20160, 0, 0, 0, 120, 630, 3024, 12600, 43200, 113400, 201600, 181440
Offset: 3
1: 0
2: 0
3: x^3
4: x^3 (4 + 3 x)
5: x^3 (10 + 15 x + 12 x^2)
6: x^3 (20 + 45 x + 72 x^2 + 60 x^3)
giving
1 3-cycle in K_3
4 3-cycles and 3 4-cycles in K_4
From _Peter Luschny_, Oct 22 2017: (Start)
Prepending six zeros leads to the regular triangle:
[0] 0
[1] 0, 0
[2] 0, 0, 0
[3] 0, 0, 0, 1
[4] 0, 0, 0, 4, 3
[5] 0, 0, 0, 10, 15, 12
[6] 0, 0, 0, 20, 45, 72, 60
[7] 0, 0, 0, 35, 105, 252, 420, 360
[8] 0, 0, 0, 56, 210, 672, 1680, 2880, 2520
[9] 0, 0, 0, 84, 378, 1512, 5040, 12960, 22680, 20160
(End)
Cf.
A144151 (generalization to include 1- and 2-"cycles").
-
A284947row := n -> seq(`if`(k<3, 0, pochhammer(3,k-3)*binomial(n,k)), k=0..n):
seq(A284947row(n), n=3..10); # Peter Luschny, Oct 22 2017
-
CoefficientList[Table[-(n*x*(2 - x + n*x - 2*HypergeometricPFQ[{1, 1, 1 - n}, {2}, -x]))/4, {n, 10}], x] // Flatten
A117130
Maximal number of cycles in complete graph on n nodes that can be unknotted when the graph is embedded in three-dimensional Euclidean space.
Original entry on oeis.org
0, 0, 0, 1, 7, 37, 197, 1171
Offset: 0
A386399
Number of forests with at most n unlabeled nodes.
Original entry on oeis.org
1, 2, 4, 7, 13, 23, 43, 80, 156, 309, 638, 1348, 2949, 6607, 15206, 35720, 85625, 208588, 515787, 1291316, 3269194, 8355832, 21539988, 55942920, 146271594, 384746580, 1017522228, 2704227858, 7219183490, 19351410860, 52068524665, 140588391713, 380824067016
Offset: 0
A119913
Number of directed simple cycles in the complete graph K_n.
Original entry on oeis.org
0, 0, 2, 14, 74, 394, 2344, 16036, 125628, 1112028, 10976118, 119481218, 1421542550, 18348340022, 255323504812, 3809950976872, 60683990530072, 1027542662934744, 18430998766219146, 349096664728623126, 6962409983976703106, 145841989688186383106
Offset: 1
Amir M. Ben-Amram (amirben(AT)mta.ac.il), Aug 02 2006
a(4)=14 because there are 6 4-cycles and 8 3-cycles.
Cf.
A002807 (number of undirected cycles).
-
function a = an(n) s = 0; for i = 2:n-1 s = s+fix(exp(1)*factorial(i)); end a = s - (n+3)*(n-2)/2;
-
Table[n (2 HypergeometricPFQ[{1, 1, 1 - n}, {2}, -1] - n - 1)/2, {n, 20}] (* Eric W. Weisstein, Dec 14 2017 *)
A289896
Number of (undirected) cycles in the n-triangular honeycomb rook graph.
Original entry on oeis.org
0, 0, 1, 8, 45, 242, 1414, 9432, 72246, 628260, 6116319, 65856928, 776628203, 9950798214, 137612550620, 2042588039056, 32384583304092, 546155914771464, 9761655297881037, 184309987662192600, 3665514979650544153, 76586509823743735706, 1677182881414143407490
Offset: 1
Cf.
A002807 (cycles in the complete graph).
-
Table[Sum[Binomial[k, l] (l - 1)!, {k, n}, {l, 3, k}]/2, {n, 20}]
Table[Sum[k (2 HypergeometricPFQ[{1, 1, 1 - k}, {2}, -1] - k - 1)/4, {k, n}], {n, 20}]
Comments