A000409
Singular n X n (0,1)-matrices: the number of n X n (0,1)-matrices having distinct, nonzero ordered rows, but having at least two equal columns or at least one zero column.
Original entry on oeis.org
0, 6, 350, 43260, 14591171, 14657461469, 46173502811223, 474928141312623525, 16489412944755088235117, 1985178211854071817861662307, 846428472480689964807653763864449, 1299141117072945982773752362381072143359, 7268140170419155675761326840423792818571154945, 149650282980396792665043455999899697765782372693740287
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. Kahn, J. Komlos and E. Szemeredi, On the probability that a random ±1-matrix is singular, J. AMS 8 (1995), 223-240.
- Goran Kilibarda and Vladeta Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
- J. Komlos, On the determinant of (0,1)-matrices, Studia Math. Hungarica 2 (1967), 7-21.
- N. Metropolis and P. R. Stein, On a class of (0,1) matrices with vanishing determinants, J. Combin. Theory, 3 (1967), 191-198.
- Index entries for sequences related to binary matrices
-
[ -(&+[StirlingFirst(n+1,k+1)*Binomial(2^k-1,n): k in [0..n-1]]): n in [2..15]]; // G. C. Greubel, Jun 05 2020
-
with(combinat): T := proc(n) -sum(stirling1(n+1,k+1)*binomial(2^k-1,n),k=0..n-1); end proc:
-
a[n_] := -Sum[ StirlingS1[n+1, k+1]*Binomial[2^k-1, n], {k, 0, n-1}]; Table[a[n], {n, 2, 15}] (* Jean-François Alcover, Nov 21 2012, from formula *)
-
a(n) = -sum(k=0, n-1, stirling(n+1, k+1, 1)*binomial(2^k-1, n)); \\ Michel Marcus, Jun 05 2020
-
[sum((-1)^(n+k+1)*stirling_number1(n+1,k+1)*binomial(2^k-1,n) for k in (0..n-1)) for n in (2..15)] # G. C. Greubel, Jun 05 2020
A052496
Number of nonsingular n X n matrices over GF(8).
Original entry on oeis.org
1, 7, 3528, 115379712, 241909719367680, 32467582052437076213760, 278893342293098904613804037898240, 153323163270070838469523866093442017326530560
Offset: 0
-
[1] cat [&*[(8^n-8^k): k in [0..n-1]]: n in [1..10]]; // Bruno Berselli, Jan 30 2013
-
Table[Product[(8^n - 8^j), {j, 0, n-1}], {n, 0, 10}] (* G. C. Greubel, May 14 2019 *)
-
{a(n) = prod(j=0,n-1, 8^n - 8^j)}; \\ G. C. Greubel, May 14 2019
-
[product(8^n - 8^j for j in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 14 2019
A052497
Number of nonsingular n X n matrices over GF(9).
Original entry on oeis.org
1, 8, 5760, 339655680, 1624314979123200, 629282246371356907929600, 19747506525777609095698646040576000, 50195501537943419769100848121708339934527488000
Offset: 0
-
[1] cat [&*[(9^n - 9^k): k in [0..n-1]]: n in [1..10]]; // Bruno Berselli, Jan 28 2013
-
Table[Product[(9^n - 9^j), {j, 0, n-1}], {n, 0, 10}] (* G. C. Greubel, May 14 2019 *)
-
{a(n) = prod(j=0,n-1, 9^n - 9^j)}; \\ G. C. Greubel, May 14 2019
-
[product(9^n - 9^j for j in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 14 2019
A056989
Number of nonsingular n X n (-1,0,1)-matrices (over the reals).
Original entry on oeis.org
1, 2, 48, 11808, 27947520, 609653621760, 119288919620689920
Offset: 0
a(1) = 2: [1], [ -1].
a(2) = 48: There are 8 choices for the first column, u (say) and then the 2nd column can be anything except 0, u, -u, so 6 choices, giving a total of 8*6 = 48.
-
(* A brute force solution up to n = 4 *) a[n_] := a[n] = (m = Array[x, {n, n}]; cnt = 0; iter = {#, -1, 1}& /@ Flatten[m]; Do[ If[ Det[m] != 0, cnt++], Evaluate[ Sequence @@ iter]]; cnt); Table[ Print[a[n]]; a[n], {n, 1, 4}] (* Jean-François Alcover, Oct 11 2012 *)
a(4) from Winston C. Yang (winston(AT)cs.wisc.edu), Aug 27 2000
a(0)-a(5) confirmed and a(6) added by
Minfeng Wang, May 01 2024
A296548
Triangle read by rows: T(n,k) is the number of diagonalizable n X n matrices over GF(2) that have rank k, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 28, 28, 1, 1, 120, 560, 120, 1, 1, 496, 9920, 9920, 496, 1, 1, 2016, 166656, 714240, 166656, 2016, 1, 1, 8128, 2731008, 48377856, 48377856, 2731008, 8128, 1, 1, 32640, 44216320, 3183575040, 13158776832, 3183575040, 44216320, 32640, 1
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 6, 1;
1, 28, 28, 1;
1, 120, 560, 120, 1;
1, 496, 9920, 9920, 496, 1;
1, 2016, 166656, 714240, 166656, 2016, 1;
...
-
b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, b(n-1, k-1)+2^k*b(n-1, k)))
end:
T:= (n,k)-> 2^(k*(n-k))*b(n, k):
seq(seq(T(n, k), k=0..n), n=0..8); # Alois P. Heinz, Dec 02 2024
-
nn = 8; g[n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[
QFactorial[n, q]] /. q -> 2; Grid[Map[Select[#, # > 0 &] &,
Table[g[n], {n, 0, nn}] CoefficientList[Series[Sum[(u z)^r/g[r] , {r, 0, nn}] Sum[z^r/g[r], {r, 0, nn}], {z, 0, nn}], {z, u}]]]
A203303
Vandermonde determinant of the first n terms of (1,2,4,8,16,...).
Original entry on oeis.org
1, 1, 6, 1008, 20321280, 203199794380800, 4096245678214226116608000, 671169825411994707343327912777482240000, 3589459026274030507466469204160461571257625328222208000000, 2511229721141086754031154605327661795863172723306019839389105937236728217600000000
Offset: 1
-
[1] cat [(&*[(&*[2^(k+1) -2^j: j in [0..k]]): k in [0..n-2]]): n in [2..15]]; // G. C. Greubel, Aug 31 2023
-
# First program
with(LinearAlgebra):
a:= n-> Determinant(VandermondeMatrix([2^i$i=0..n-1])):
seq(a(n), n=1..12); # Alois P. Heinz, Jul 23 2017
# Second program
f:= n -> 2^(n*(n-1)*(n-2)/6)*mul((2^k-1)^(n-k),k=1..n-1):
seq(f(n),n=1..12); # Robert Israel, Jan 16 2018
-
(* First program *)
f[j_]:= 2^(j-1); z = 15;
v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
Table[v[n], {n,z}] (* A203303 *)
Table[v[n+1]/v[n], {n,z}] (* A002884 *)
Table[v[n]*v[n+2]/(2*v[n+1]^2), {n,z}] (* A171499 *)
Table[FactorInteger[v[n]], {n,z}]
(* Second program *)
Table[Product[2^(k+1) -2^j, {k,0,n-2}, {j,0,k}], {n,15}] (* G. C. Greubel, Aug 31 2023 *)
-
[product(product(2^(k+1) -2^j for j in range(k+1)) for k in range(n-1)) for n in range(1,16)] # G. C. Greubel, Aug 31 2023
A286331
Triangle read by rows: T(n,k) is the number of n X n matrices of rank k over F_2.
Original entry on oeis.org
1, 1, 1, 1, 9, 6, 1, 49, 294, 168, 1, 225, 7350, 37800, 20160, 1, 961, 144150, 4036200, 19373760, 9999360, 1, 3969, 2542806, 326932200, 8543828160, 39687459840, 20158709760, 1, 16129, 42677334, 23435953128, 2812314375360, 71124337751040, 325139829719040, 163849992929280
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 9, 6;
1, 49, 294, 168;
1, 225, 7350, 37800, 20160;
1, 961, 144150, 4036200, 19373760, 9999360;
...
T(2,1) = 9 because there are 9, 2 X 2 matrices in F_2 that have rank 1: {{0, 0}, {0, 1}}, {{0, 0}, {1, 0}}, {{0, 0}, {1, 1}}, {{0, 1}, {0, 0}}, {{0, 1}, {0, 1}}, {{1, 0}, {0, 0}}, {{1, 0}, {1, 0}}, {{1,1}, {0, 0}}, {{1, 1}, {1, 1}}.
- Robert Israel, Table of n, a(n) for n = 0..1710 (rows 0 to 57, flattened)
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Wikipedia, q-binomial
-
T:= (n,k) -> mul((2^n-2^j)^2/(2^k-2^j),j=0..k-1):
seq(seq(T(n,k),k=0..n),n=0..10); # Robert Israel, May 15 2017
-
q = 2; Table[Table[Product[(q^n - q^i)^2/(q^k - q^i), {i, 0, k - 1}], {k, 0, n}], {n, 0, 6}] // Grid
A034383
Number of labeled groups.
Original entry on oeis.org
1, 2, 3, 16, 30, 480, 840, 22080, 68040, 1088640, 3991680, 259459200, 518918400, 16605388800, 163459296000, 10353459916800, 22230464256000, 1867358997504000, 6758061133824000, 648773868847104000, 5474029518397440000, 122618261212102656000
Offset: 1
-
A034383 := function(n) local fn, sum, k; fn := Factorial(n); sum := 0; for k in [1 .. NrSmallGroups(n)] do sum := sum + fn / Size(AutomorphismGroup(SmallGroup(n,k))); od; return sum; end; # Stephen A. Silver, Feb 10 2013
A052498
Number of nonsingular n X n matrices over GF(11).
Original entry on oeis.org
1, 10, 13200, 2124276000, 41393302251840000, 97602635428252959312000000, 27847155251069188894843979022720000000, 961359275427083998992553051820498439890246400000000
Offset: 0
-
[1] cat [&*[(11^n - 11^k): k in [0..n-1]]: n in [1..10]]; // Bruno Berselli, Jan 28 2013
-
Table[Product[11^n - 11^k, {k, 0, n-1}], {n, 0, 10}] (* Vincenzo Librandi, Jan 28 2013 *)
-
{a(n) = prod(j=0,n-1, 11^n - 11^j)}; \\ G. C. Greubel, May 14 2019
-
[product(11^n - 11^j for j in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 14 2019
A083402
Let A_n be the upper triangular matrix in the group GL(n,2) that has zero entries below the main diagonal and 1 elsewhere; a(n) is the size of the conjugacy class of this matrix in GL(n,2).
Original entry on oeis.org
1, 3, 42, 2520, 624960, 629959680, 2560156139520, 41781748196966400, 2732860586067178291200, 715703393163961188325785600, 750102961052993818881476159078400, 3145391744524297920839316348340273152000, 52764474940208177704130232748554603290689536000
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Jun 12 2003
For example for n=4 the matrix is / 1,1,1,1 / 0,1,1,1 / 0,0,1,1 / 0,0,0,1 /.
-
a:= n-> 2^((n-1)*(n-2)/2) *mul(2^k-1, k=1..n):
seq(a(n), n=1..15); # Alois P. Heinz, May 14 2013
-
a[n_] := 2^((n-1)*(n-2)/2)*Product[2^k-1, {k, 1, n}]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
Comments