cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 95 results. Next

A346214 Triangular array read by rows. T(n,k) is the number of nilpotent n X n matrices over GF(2) with index k, 1 <= k <= n, n >= 1.

Original entry on oeis.org

1, 1, 3, 1, 21, 42, 1, 315, 1260, 2520, 1, 6975, 104160, 312480, 624960, 1, 373023, 23436000, 104993280, 314979840, 629959680, 1, 32252031, 9175162752, 121912197120, 426692689920, 1280078069760, 2560156139520, 1, 6619979775, 9978120069120, 421755245936640, 1989607056998400, 6963624699494400, 20890874098483200, 41781748196966400
Offset: 1

Views

Author

Geoffrey Critzer, Jul 10 2021

Keywords

Comments

The index of a nilpotent matrix A is the smallest positive integer k such that A^k = 0.
Define the co-index of an n X n matrix A to be n - index(A). Let X_n be the random variable that assigns to each nilpotent n X n matrix over GF(2) the value j in {0,1,...,n-1} of its co-index. Conjecture: lim_{n->inf} P(X_n = j) = Product_{i>=1}1-1/2^i * 2^((j-1)^2)/A002884(j). Moreover, for j < 2n, T(n,n-j) = A002884(n)/(A002884(j)*2^(n - (j-1)^2)). - Geoffrey Critzer, Jun 10 2025

Examples

			  1,
  1,    3,
  1,   21,     42,
  1,  315,   1260,   2520,
  1, 6975, 104160, 312480, 624960
		

Crossrefs

Cf. A083402 (main diagonal), A053763 (row sums), A002884, A048651.

Programs

  • Mathematica
    nn = 8;  q = 2;
    b[p_, i_] := Count[p, i];
    d[p_, i_] :=  Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];
    aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}];
    l = Level[Table[IntegerPartitions[n],  {n,  0,  nn}],  {2}];
    \[Gamma][n_, q_] := Product[q^n - q^i, {i, 0, n - 1}];
    g[u_,  v_,  deg_,  partitions_] := Total[Map[v^If[# == {},  0,  Max[#]] u^(deg Total[#])/aut[deg,  #] &, partitions]];
    Map[Select[#,  # > 0 &] &, Drop[Table[\[Gamma][n,  q],  {n,  0,  nn}] CoefficientList[     Series[g[u,  v,  1,  l],  {u,  0,  nn}],  {u,  v}],  1]] // Grid

Extensions

More terms from Geoffrey Critzer, Jun 10 2025

A348622 Triangular array read by rows: T(n,k) is the number of periodic n X n matrices over GF(2) having rank k, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 6, 6, 1, 28, 168, 168, 1, 120, 3360, 20160, 20160, 1, 496, 59520, 1666560, 9999360, 9999360, 1, 2016, 999936, 119992320, 3359784960, 20158709760, 20158709760, 1, 8128, 16386048, 8127479808, 975297576960, 27308332154880, 163849992929280, 163849992929280
Offset: 0

Views

Author

Geoffrey Critzer, Oct 25 2021

Keywords

Comments

A matrix T is periodic if and only image(T) = image(T^2). Cf. A348015.

Examples

			Triangle begins:
  1;
  1,   1;
  1,   6,     6;
  1,  28,   168,     168;
  1, 120,  3360,   20160,   20160;
  1, 496, 59520, 1666560, 9999360, 9999360;
  ...
		

Crossrefs

Cf. A348015 (row sums).
Main diagonal gives A002884.

Programs

  • Maple
    b:= proc(n) option remember; mul(2^n-2^i, i=0..n-1) end:
    T:= (n, k)-> b(n)/b(n-k):
    seq(seq(T(n, k), k=0..n), n=0..8);  # Alois P. Heinz, Oct 30 2021
  • Mathematica
    nn = 7; q = 2; b[p_, i_] := Count[p, i];s[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] := Product[Product[q^(s[p, i] deg) - q^((s[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; \[Nu] = Table[1/n Sum[MoebiusMu[n/m] q^m, {m, Divisors[n]}], {n, 1,nn}]; l[greatestpart_]:=Level[Table[IntegerPartitions[n, {0, n}, Range[greatestpart]], {n, 0, nn}], {2}];
    g1[u_, v_, deg_] :=Total[Map[v^(Length[#]) u^(deg Total[#])/aut[deg, #] &, l[1]]];
    g2[u_, v_, deg_] := Total[Map[v^Length[#] u^(deg Total[#])/aut[deg, #] &,l[nn]]];
    Map[Reverse, Map[Select[#, # > 0 &] &,Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g1[u, v, 1] g2[u, 1, 1]^(q - 1) Product[g2[u, 1, d]^\[Nu][[d]], {d, 2, nn}], {u, 0, nn}], {u,v}]]] // Flatten

Formula

T(n,k) = A002884(n)/A002884(n-k).
T(n,k) = T(n,k-1)*T(n-k+1,1).
Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/B(n) = e(x)*g(y*x) where e(x) = Sum_{n>=0} x^n/B(n), g(x) = Sum_{n>=0} Product_{i=0..n-1} (q^n-q^i)*x^n/B(n), B(n) = Product_{i=0..n-1} (q^n-q^i)/(q-1)^n and q=2. - Geoffrey Critzer, Jan 03 2025

Extensions

Title improved by Geoffrey Critzer, Sep 16 2022

A060704 Singular n X n matrices over GF(2).

Original entry on oeis.org

1, 10, 344, 45376, 23555072, 48560766976, 399099960492032, 13098680304497852416, 1718239329196060706865152, 901210462928281273073900978176, 1890350559451566075272982533664407552
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 20 2001

Keywords

Comments

Also (apparently) number of n X n matrices over GF(2) having permanent = 0. - Hugo Pfoertner, Nov 14 2003

Crossrefs

Programs

  • Maple
    for n from 1 to 20 do printf(`%d,`,2^(n^2) - product(2^n - 2^j, j=0..n-1)) od:
  • PARI
    a(n)={2^(n^2) - prod(i=0, n-1, 2^n - 2^i)} \\ Harry J. Smith, Jul 09 2009

Formula

For n >= 1 a(n) = 2^(n^2) - A002884(n) = A002416(n) - A002884(n) = 2^(n^2) - Product_{i=0..n-1} (2^n - 2^i).

Extensions

More terms from James Sellers, Apr 23 2001

A065498 Number of invertible n X n matrices mod 6 (i.e., over the ring Z_6).

Original entry on oeis.org

1, 2, 288, 1886976, 489104179200, 4755360379856486400, 1695944421638473850132889600, 21967113634648374162210646578639667200, 10286692771039109536373764545035369981946101760000, 173770439600109774111384717714984362383506603790098046648320000
Offset: 0

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 25 2001

Keywords

Crossrefs

Column k=6 of A316622.

Programs

  • Mathematica
    a[n_] := 6^(n^2)*Product[(1 - 1/2^k)*(1 - 1/3^k), { k, 1, n} ]; Table[ a[n], {n, 0, 9} ]

Formula

a(n) = 6^(n^2) * Product_{k=1..n} ((1 - 1/2^k)(1 - 1/3^k)).
a(n) = A002884(n)*A053290(n). - Geoffrey Critzer, Jan 26 2018
a(n) ~ c * 6^(n^2), where c = A048651 * A100220 = 0.161757743053... . - Amiram Eldar, Jul 06 2025

Extensions

More terms from Robert G. Wilson v, Nov 28 2001

A070731 Size of largest conjugacy class in the group GL(n,2).

Original entry on oeis.org

1, 3, 56, 3360, 833280, 959938560, 3901190307840, 63667425823948800, 4759267415191820697600, 1246395024829755538853068800
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 15 2002

Keywords

Crossrefs

Extensions

More terms from Vladeta Jovovic, Jun 03 2002

A085430 a(n) is the minimal m such that the group GL(m,2) has an element of order n.

Original entry on oeis.org

2, 2, 3, 4, 4, 3, 5, 6, 6, 10, 5, 12, 5, 4, 9, 8, 8, 18, 7, 5, 12, 11, 7, 20, 14
Offset: 2

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 18 2003

Keywords

Comments

For n > 1, a(prime(n)) = A014664(n). Also, a(n) <= n. - Eric M. Schmidt, May 17 2013

Crossrefs

Cf. A002884.

Programs

  • GAP
    A085430 := function(n) local m; if IsPrime(n) and n>2 then return Order(2*Z(n)^0); fi; m := 1; while true do if ForAny(ConjugacyClasses(GL(m,2)), cc->Order(Representative(cc))=n) then return m; fi; m := m + 1; od; end; # Eric M. Schmidt, May 17 2013

Extensions

Sequence extended and corrected by Eric M. Schmidt, May 17 2013

A086812 Number of symmetric invertible n X n matrices over GF(2).

Original entry on oeis.org

1, 4, 28, 448, 13888, 888832, 112881664, 28897705984, 14766727757824, 15121129224011776, 30952951521552105472, 126783289432277424013312, 1038481923739784380093038592, 17014487838552627283444344291328
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 15 2003

Keywords

References

  • R. P. Brent and B. D. McKay, Determinants of random symmetric matrices over Zm, Ars Combinatoria, 26-A (1988) 57-64.

Crossrefs

Cf. A002884.

Programs

  • Maple
    for n from 1 to 31 do k := ceil(n/2); a[n] := 2^(n*(n+1)/2)*product(1-(1/2)^j,j=1..2*k)/product(1-(1/4)^j,j=1..k); od:seq(a[j],j=1..31); # Sascha Kurz, Sep 19 2003
  • Mathematica
    m = 14; For[n = 1, n <= m, n++, k = Ceiling[n/2]; a[n] = 2^(n*(n+1)/2)* Product[1-(1/2)^j, {j, 1, 2k}]/Product[1-(1/4)^j, {j, 1, k}]];
    Array[a, m] (* Jean-François Alcover, Feb 24 2019, from Maple *)

Formula

Let k = ceiling(n/2). Then a(n) = 2^(n*(n+1)/2) * (Product_{j=1..2k} (1 - (1/2)^j)) / Product_{j=1..k} (1 - (1/4)^j).

Extensions

More terms from Ray Chandler and Sascha Kurz, Sep 19 2003

A224879 Number of equivalence classes of n X n nonsingular matrices over GF(2), up to row and column permutation.

Original entry on oeis.org

1, 2, 7, 51, 885, 44206, 6843555, 3373513302, 5366987461839, 27936547529976720, 482768359608369460173, 28090323163597327933723100, 5574677486781815353253212392653, 3816761688188495487649082049091445498, 9106495173413853187392282303788066742174903
Offset: 1

Views

Author

Finley Freibert, Jul 23 2013

Keywords

Crossrefs

A002884 counts all matrices nonsingular over GF(2).
A116976 counts equivalence classes of binary matrices nonsingular over the reals.

Extensions

a(8) from Brendan McKay, May 25 2020
a(9) onwards from Ludovic Schwob, Sep 25 2023

A288853 Triangle read by rows: T(n,k) is the number of surjective linear mappings from an n-dimensional vector space over F_2 onto a k-dimensional vector space, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 3, 6, 1, 7, 42, 168, 1, 15, 210, 2520, 20160, 1, 31, 930, 26040, 624960, 9999360, 1, 63, 3906, 234360, 13124160, 629959680, 20158709760, 1, 127, 16002, 1984248, 238109760, 26668293120, 2560156139520, 163849992929280, 1, 255, 64770, 16322040, 4047865920, 971487820800, 217613271859200, 41781748196966400, 5348063769211699200
Offset: 0

Views

Author

Geoffrey Critzer, Jun 18 2017

Keywords

Comments

The (q = 2) analog of A008279.
A022166(m,k)*T(n,k) is the number of m X n matrices over F_2 that have rank k.
a(n) is the number of n X n matrices over F_2 in Green's R class containing A where rank(A) = k. - Geoffrey Critzer, Oct 05 2022

Examples

			  1;
  1,  1;
  1,  3,   6;
  1,  7,  42,   168;
  1, 15, 210,  2520,  20160;
  1, 31, 930, 26040, 624960, 9999360;
  ...
		

Crossrefs

Columns k=0-10 give: A000012, A000225, 6*A006095, 168*A006096, 20160*A006097, 9999360*A006110, 20158709760*A022189, 163849992929280*A022190, 5348063769211699200*A022191, 699612310033197642547200*A022192, 366440137299948128422802227200*A022193.
Main diagonal gives A002884.
Cf. A022166.

Programs

  • Mathematica
    Table[Table[Product[q^n - q^i, {i, 0, k - 1}] /. q -> 2, {k, 0, n}], {n, 0,8}] // Grid

Formula

T(n,k) = Product_{j=0..k-1} (2^n - 2^j).
T(n,k) = A002884(k)*A022166(n,k).
Let g_m(x) = Sum_{n>=0} (2^m*x)^n/A005329(n) and e(x) = Sum_{n>=0} x^n/A005329(n). Then Sum_{k>=0} T(n,k)*x^k/A005329(k) = g_n(x)/e(x). - Geoffrey Critzer, Jun 01 2024

A345463 Number of n X n matrices over GF(2) whose characteristic polynomial is irreducible.

Original entry on oeis.org

2, 2, 48, 4032, 1935360, 2879815680, 23222833643520, 629183972848435200, 76669842195418919731200, 35461948770962722105432473600, 69793654310697320331920603401420800, 526981774867699711240400039137800880128000, 16622838761287803491875715175557341313583022080000
Offset: 1

Views

Author

Geoffrey Critzer, Jun 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 12; A001037 = Table[1/n Sum[MoebiusMu[n/d] 2^d, {d, Divisors[n]}], {n, 1,
        nn}] Table[Product[2^n - 2^i, {i, 0, n - 1}], {n, 1, nn}]/ Table[2^n - 1, {n, 1, nn}]

Formula

a(n) = A001037(n)*A002884(n)/A000225(n).
Previous Showing 41-50 of 95 results. Next