cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 129 results. Next

A364510 a(n) = binomial(4*n, n)^2.

Original entry on oeis.org

1, 16, 784, 48400, 3312400, 240374016, 18116083216, 1401950721600, 110634634890000, 8862957169158400, 718528370729238784, 58818762721626513424, 4853704694918904043024, 403242220875862752160000, 33694913171561404510440000, 2829611125043050701300998400
Offset: 0

Views

Author

Peter Bala, Jul 28 2023

Keywords

Crossrefs

Programs

  • Maple
    seq( binomial(4*n,n)^2, n = 0..15);
  • Mathematica
    A364510[n_]:=Binomial[4n,n]^2;Array[A364510,15,0] (* Paolo Xausa, Oct 05 2023 *)

Formula

a(n) = Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i)^2 * binomial(4*n, 2*n+i).
Compare with Dixon's identity: Sum_{i = -n..n} (-1)^i * binomial(2*n, n+i)^3 = (3*n)!/n!^3.
a(n) = A005810(n)^2.
P-recursive: a(n) = 16 * ( (4*n - 1)*(4*n - 2)*(4*n - 3)/(3*n*(3*n - 1)*(3*n - 2)) )^2 * a(n-1) with a(0) = 1.
a(n) ~ c^n * 2/(3*Pi*n), where c = (2^16)/(3^6).
a(n) = [x^n] G(x)^(16*n), where the power series G(x) = 1 + x + 9*x^2 + 225*x^3 + 7525*x^4 + 295228*x^5 + 12787152*x^6 + 592477457*x^7 + 28827755219*x^8 + ... appears to have integer coefficients.
exp( Sum_{n > = 1} a(n)*x^n/n ) = F(x)^16, where the power series F(x) = 1 + x + 25*x^2 + 1033*x^3 + 53077*x^4 + 3081944*x^5 + 193543624*x^6 + 12835533333*x^7 + 886092805699*x^8 + ... appears to have integer coefficients.
The supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3^r)) hold for all primes p >= 5 and all positive integers n and r.
a(n) = [x^(3*n)] ( (1 - x)^(6*n)*Legendre_P(2*n, (1 + x)/(1 - x)) ). - Peter Bala, Aug 14 2023

A071801 a(n) = binomial(2n, n) - binomial(n, floor(n/2))^2.

Original entry on oeis.org

0, 1, 2, 11, 34, 152, 524, 2207, 7970, 32744, 121252, 491988, 1850380, 7455944, 28337976, 113708295, 435443490, 1742630120, 6711230900, 26811568916, 103711749284, 413849297784, 1606464657096, 6405315809516, 24935144010764, 99367486347752
Offset: 0

Views

Author

T. D. Noe, Jun 06 2002

Keywords

Comments

Number of lattice paths in the lattice [0..n] X [0..n] which do not pass through the point (floor(n/2),floor(n/2)). In this case, the "hole" in the lattice is at the point closest to the lattice center.

Crossrefs

Programs

  • Magma
    [Binomial(2*n, n) - Binomial(n, Floor(n/2))^2 : n in [0..40]]; // Wesley Ivan Hurt, Jan 03 2017
  • Maple
    A071801:=n->binomial(2*n, n) - binomial(n, floor(n/2))^2: seq(A071801(n), n=0..30); # Wesley Ivan Hurt, Jan 03 2017
  • Mathematica
    Table[Binomial[2n, n] - Binomial[n, Floor[n/2]]^2, {n, 0, 20}]

Formula

a(n) = A000984(n) - A001405(n)^2.
Also, a(n) = Sum_{m=0..n} binomial(n, m)^2 - binomial(n, floor(n/2))^2.
G.f.: 1/sqrt(1-4*x) + 1/(4*x) - (4*x+1)*EllipticK(4*x)/(2*x*Pi). - Mark van Hoeij, May 01 2013

Extensions

More terms from Roger L. Bagula, Aug 28 2006
Edited by N. J. A. Sloane, Oct 08 2006

A232607 G.f. A(x) satisfies: (A(x) + x*A'(x)) / (A(x) - x*A(x)^2) = Sum_{n>=0} binomial(2*n,n)^2*x^n.

Original entry on oeis.org

1, 3, 19, 159, 1546, 16517, 188246, 2248863, 27844369, 354576634, 4618570090, 61289049293, 826064774033, 11281763625102, 155834042142463, 2173801434825011, 30585769379262567, 433633765794690539, 6189637467948022825, 88886796123324352030, 1283443017706197910489, 18623352714450226405962
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2013

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 19*x^2 + 159*x^3 + 1546*x^4 + 16517*x^5 + 188246*x^6 +...
where the g.f. satisfies:
(A(x) + x*A'(x)) / (A(x) - x*A(x)^2) = 1 + 2^2*x + 6^2*x^2 + 20^2*x^3 + 70^2*x^4 + 252^2*x^5 +...+ A000984(n)^2*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(CB2=sum(k=0,n,binomial(2*k,k)^2*x^k)+x*O(x^n), A=1+x*O(x^n));
    for(i=1,n,A = 1 + intformal( (CB2-1)*A/x - CB2*A^2));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: A(x) = (1/x)*Series_Reversion(x/F(x)) where F(x) = A(x/F(x)) is the g.f. of A232606.
Limit n->infinity a(n)^(1/n) = 16. - Vaclav Kotesovec, Jul 05 2014

A264960 Half-convolution of the central binomial coefficients A000984 with itself.

Original entry on oeis.org

1, 2, 10, 32, 146, 512, 2248, 8192, 35218, 131072, 556040, 2097152, 8815496, 33554432, 140107040, 536870912, 2230302098, 8589934592, 35541690568, 137438953472, 566823203656, 2199023255552, 9044910175520, 35184372088832, 144393718191496
Offset: 0

Views

Author

Peter Bala, Nov 29 2015

Keywords

Comments

The half-convolution of a sequence {s(n)}n>=0 with itself is defined by r(n) := Sum_{k = 0..floor(n/2)} s(k)*s(n-k). See A201204.

Crossrefs

Programs

  • GAP
    List([0..24],n->Sum([0..Int(n/2)],k->Binomial(2*k,k)*Binomial(2*n-2*k,n-k))); # Muniru A Asiru, Nov 25 2018
    
  • Magma
    [(&+[Binomial(2*k,k)*Binomial(2*n-2*k, n-k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Nov 26 2018
    
  • Maple
    A264960:= n-> add(binomial(2*k,k)*binomial(2*n - 2*k, n - k),k = 0..floor(n/2)):
    seq(A264960(n),n = 0..24);
  • Mathematica
    a[n_] := Sum[Binomial[2k, k]*Binomial[2n - 2k, n - k], {k, 0, Floor[n/2]}]; Array[a, 30, 0] (* Amiram Eldar, Nov 25 2018 *)
  • PARI
    a(n) = sum(k = 0, n\2, binomial(2*k,k)*binomial(2*n - 2*k, n - k)); \\ Michel Marcus, Nov 30 2015
    
  • Sage
    [sum(binomial(2*k,k)*binomial(2*n-2*k, n-k) for k in (0..floor(n/2))) for n in range(30)] # G. C. Greubel, Nov 26 2018

Formula

a(n) = Sum_{k = 0..floor(n/2)} binomial(2*k,k)*binomial(2*n - 2*k, n - k).
a(2*n + 1) = 2^(4*n + 1) = A013776(n).
a(2*n) = (1/2)*(binomial(2*n,n)^2 + 16^n) = A112830(2*n,n).
O.g.f.: (1/2)*( 2/Pi*EllipticK(4*x) + 1/(1 - 4*x) ).
E.g.f.: (1/2)*( cosh(4*x) + sinh(4*x) + (BesselI(0,2*x))^2 ).
D-finite with recurrence: - (2*n-3)*n^2*a(n) + 4*(2*n-1)*(n-1)^2*a(n-1) + 16*(2*n-3)*(n-1)^2*a(n-2) - 64*(2*n-1)*(n-2)^2*a(n-3) = 0. - Georg Fischer, Nov 25 2022

A268150 A double binomial sum involving absolute values.

Original entry on oeis.org

0, 8, 2496, 177120, 7616000, 255780000, 7410154752, 194544814464, 4760448675840, 110493063252000, 2461297261280000, 53051182041906048, 1113060644163127296, 22833886572836393600, 459594580755139200000, 9100826722891800000000, 177680489488222659379200, 3426237501864596491802400
Offset: 0

Views

Author

Richard P. Brent, Jan 27 2016

Keywords

Comments

A fast algorithm follows from Lemma 1 of Brent et al. article.

Crossrefs

Programs

  • Maple
    A268150 := proc(n)
        add( add( binomial(2*n,n+k)*binomial(2*n,n+l)*abs(k^2-l^2)^3,l=-n..n),k=-n..n) ;
    end proc:
    seq(A268150(n),n=0..10) ; # R. J. Mathar, Feb 27 2023
  • PARI
    a(n) = sum(k=-n,n, sum(l=-n,n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^3));

Formula

a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^3).
Conjecture D-finite with recurrence -(4621*n-8921)*(n-1)^2*a(n) +4*(148256*n^3 -1055204*n^2 +2794799*n -2529792)*a(n-1) -64*(32443*n- 32400)*(2*n-3)*(2*n-5)*a(n-2)=0. - R. J. Mathar, Feb 27 2023

A268152 A double binomial sum involving absolute values.

Original entry on oeis.org

0, 8, 8832, 1228800, 79364096, 3562536960, 129276837888, 4079413624832, 116608362086400, 3096396542509056, 77661255048888320, 1861218099127123968, 42980384518787039232, 962362945373732864000, 20993511648589057622016, 447858123072052742062080, 9371462498278516088373248
Offset: 0

Views

Author

Richard P. Brent, Jan 27 2016

Keywords

Comments

A fast algorithm follows from Theorem 5 of Brent et al. article.

Crossrefs

Programs

  • PARI
    a(n) = sum(k=-n,n,sum(l=-n,n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^4));
    
  • PARI
    concat(0, Vec(8*x*(1+1024*x+67840*x^2+417792*x^3)/(1-16*x)^5 + O(x^20))) \\ Colin Barker, Feb 11 2016

Formula

a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^4).
From Colin Barker, Feb 11 2016: (Start)
a(n) = 4^(2*n-1)*n*(36*n^3-84*n^2+67*n-17).
a(n) = 80*a(n-1)-2560*a(n-2)+40960*a(n-3)-327680*a(n-4)+1048576*a(n-5) for n>4.
G.f.: 8*x*(1+1024*x+67840*x^2+417792*x^3) / (1-16*x)^5.
(End)

A295870 a(n) = binomial(3n,n)*CQC(n), where CQC(n) = A005721(n) = A005190(2n) is a central quadrinomial coefficient.

Original entry on oeis.org

1, 12, 660, 48720, 4005540, 349260912, 31626298704, 2940502593600, 278788387440420, 26831860080682800, 2613367831568654160, 257012469788428710720, 25479526081439438845200, 2543092744417831625342400, 255292245777771431285140800, 25755871314484468746363582720
Offset: 0

Views

Author

Bradley Klee, Feb 23 2018

Keywords

Comments

Compare with EllipticK A002894 and the Ramanujan period-energy functions A113424, A006480, A000897. The series expansion "T(x) = 2*Pi*Sum_{n>=0} a_n*x^n" determines the real period T of elliptic curves in the family "x=p^2+q^2-4*(q^2-p^2)*q, 0 < x < 1/108". This sequence serves as a counterexample to the naive idea that elliptic integrals will always evaluate to a hypergeometric function such as 2F1(a,b;c;x).
A300058 is the complex period-energy function, after scaling energy and time dimensions such that all a(n) are integers and a(0)=1. The Picard-Fuchs equation is "(12-288*x+9216*x^2)*T(x) + (-1+232*x-8160*x^2+82944*x^3)*T'(x) + (-x+164*x^2-6432*x^3+41472*x^4)*T''(x)".
Although the sequence is not generated by a hypergeometric function, it can be formulated in terms of Hypergeometric numbers, specifically the binomial coefficients. Then Zeilberger's algorithm outputs a second order recurrence with polynomial coefficients.
The contour plot is nice to look at, with reflection symmetry, three critical points, and two separatrices dividing the phase plane into eight distinct regions.
Hyperbolic Critical points are located at (q,p) locations (1/6,0) and (-1/4,sqrt(5)/4) and (-1/4,-sqrt(5)/4). Is it possible to use chord-and-tangent addition rules to produce an exponentially-convergent Diophantine approximation to sqrt(5) that moves along the upper separatrix x=1/8?
Does there exist a period-preserving transformation that takes any one of the curves with 0 < x < 1/108 into a particular Weierstrass curve from the L-function and Modular Forms Database?

References

  • D. Husemöller, Elliptic Curves, 2nd ed., New York: Springer, 2004.
  • J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., New York: Springer, 2009.

Crossrefs

Factors: A005190, A005809, A005721.
Complex Period: A300058.

Programs

  • Mathematica
    b[NN_]:=Total/@Table[((-1)^k)*Binomial[3*n,n]*Binomial[2*n,k]*Binomial[5*n-4*k-1,3*n-4*k],{n,0,NN},{k,0,Floor[3*n/4]}];
    c1=8*(-30+201*n-319*n^2+145*n^3);c2=-8640*(n-5/3)*(n-4/3)*(n-1/5);c3=10*(n-6/5)*n^2;a[0]=1;a[1]=12;a[n0_]:=ReplaceAll[(c1/c3)*a[n0-1]+(c2/c3)*a[n0-2],{n->n0}];
    ({#,SameQ[a/@Range[0, 15],#]}&@b[15])[[1]]

Formula

a(n) = A005809(n)*A005721(n).
a(n) = Sum_{k=0..floor(3n/4)} ((-1)^k)*binomial(3*n,n)*binomial(2 *n, k)*binomial(5*n - 4*k - 1, 3*n - 4*k).
c1 = 8 *(-30 + 201*n - 319*n^2 + 145*n^3); c2 = -8640*(n - 5/3)*(n - 4/3)*(n - 1/5); c3 = 10*(n - 6/5)*n^2; a(0)=1; a(1)=12; a(n) = (c1/c3)*a(n-1) + (c2/c3)*a(n-2).

A300058 a(n) = binomial(3*n,n)/(2*Pi)*Integral_{x=0..2*Pi} (12*cos^2(x)*sin(x) + 20*sin^3(x))^(2*n) dx.

Original entry on oeis.org

1, 492, 707220, 1298204880, 2654173160100, 5765723073622512, 13021894087331233104, 30217387890886676251200, 71532102917478013611243300, 171944976047709681477985038000, 418347201888204996027087975427920
Offset: 0

Views

Author

Bradley Klee, Feb 23 2018

Keywords

Comments

Compare with A295870. The series expansion "T(x)=2*Pi*sqrt(3/5)*Sum_{n>=0} a_n*(x/25)^n" determines the period T of anharmonic oscillation along a contour of the Hamiltonian energy surface "x=2H=(5/3)*p^2+q^2+4*(p^2+q^2)*q,0
The period-energy function T(x) satisfies the Picard-Fuchs equation "(2460+28512*x+2239488*x^2)*T(x)-(125-24840*x-1423008*x^2-20155392*x^3)*T'(x)+(-125*x+1620*x^2+1189728*x^3+10077696 x^4)*T''(x)", also the P.F.Eq. of A295870 under transformation x->x'=1/108-x.
A300057 has a similar definition to A005721, with a couple of extra integers appearing in the integrand. This makes a nice analogy between real and complex periods A295870, A300058. Second-order recurrences with polynomial coefficients define both sequences.

Crossrefs

Cf. A002894, A113424, A006480, A000897. Factors: A005809, A300057. Real Period: A295870.

Programs

  • Maple
    a := n -> 36^n*(3*n)!/n!^3*hypergeom([-2*n, n+1/2], [n+1], -2/3):
    seq(simplify(a(n)), n=0..10); # Peter Luschny, Apr 19 2018
  • Mathematica
    c1=12*(-230+2259*n-3933*n^2+1863*n^3);c2=5248800*(n-5/3)*(n-4/3)*(n-1/9);c3=9*n^2*(n-10/9);a[0]=1;a[1]=492;a[n0_]:=ReplaceAll[(c1/c3)*a[n0-1]+(c2/c3)*a[n0-2],n->n0];
    b[NN_]:=Expand[Total[Flatten[#]]&/@Table[Binomial[3*n,n]*Binomial[2*n,k2]*Binomial[2*n,k1]*Binomial[2*n,3*n-k1-k2]*((4+Sqrt[15])^(2*n-k1))*((4-Sqrt[15])^(2*n-k2)),{n,0,NN},{k1,0,2*n},{k2,0,2*n}]]; ({#,SameQ[#,a/@Range[0,10]]}&@b[10])[[1]]
    Table[Binomial[3*n, n] * SeriesCoefficient[(1 + 9*z + 9*z^2 + z^3)^(2*n), {z, 0, 3*n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 18 2018 *)

Formula

a(n) = A005809(n)*A300057(n).
a(n) = Sum_{k1=0..2n} Sum_{k2=0..2n} binomial(3*n,n)*binomial(2*n,k2)*binomial(2*n,k1)*binomial(2*n,3*n-k1-k2)*((4+sqrt(15))^(2*n-k1))*((4-sqrt(15))^(2*n-k2))
a(0) = 1; a(1) = 492; a(n):=(c1/c3)*a(n-1)+(c2/c3)*a(n-2); with
c1 = 12*(-230+2259*n-3933*n^2+1863*n^3);
c2 = 5248800*(n-5/3)*(n-4/3)*(n-1/9);
c3 = 9*n^2*(n-10/9);
a(n) ~ 2^(2*n - 1) * 3^(3*n - 1/2) * 5^(2*n + 1/2) / (Pi*n). - Vaclav Kotesovec, Apr 18 2018

A303503 a(n) = (2*n)! * [x^(2*n)] BesselI(0,2*x)^n.

Original entry on oeis.org

1, 2, 36, 1860, 190120, 32232060, 8175770064, 2898980908824, 1369263687414480, 830988068906518380, 630109741730668410640, 583773362067938664133512, 648851848280206013365243776, 852146184628067383511375555000, 1305460597778526044143501996708800, 2307324514460203126471248458864413200
Offset: 0

Author

Ilya Gutkovskiy, Apr 25 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
        end:
    a:= n-> (2*n)!*b(n$2)/n!^2:
    seq(a(n), n=0..17);  # Alois P. Heinz, Jan 29 2023
  • Mathematica
    Table[(2 n)! SeriesCoefficient[BesselI[0, 2 x]^n, {x, 0, 2 n}], {n, 0, 15}]

Formula

a(n) = A287318(n,n).
a(n) ~ c * d^n * n^(2*n), where c = 1.72802011936236389522137050964080... and d = 1.1381284656425793765251319541847869000364101065484286935... - Vaclav Kotesovec, Apr 26 2018
a(n) = A000984(n)*A033935(n). - Alois P. Heinz, Jan 30 2023

A307468 Cogrowth sequence for the Heisenberg group.

Original entry on oeis.org

1, 4, 28, 232, 2156, 21944, 240280, 2787320, 33820044, 424925872, 5486681368, 72398776344, 972270849512, 13247921422480, 182729003683352, 2546778437385032, 35816909974343308, 507700854900783784, 7246857513425470288, 104083322583897779656
Offset: 0

Author

Igor Pak, Apr 09 2019

Keywords

Comments

This is the number of words of length 2n in the letters x,x^{-1},y,y^{-1} that equal the identity of the Heisenberg group H=.
Also, this is the number of closed walks of length 2n on the square lattice enclosing algebraic area 0 [Béguin et al.]. - Andrey Zabolotskiy, Sep 15 2021

Examples

			For n=1 the a(1)=4 words are x^{-1}x, xx^{-1}, y^{-1}y, yy^{-1}.
		

Crossrefs

Related cogrowth sequences: Z A000984, Z^2 A002894, Z^3 A002896, (Z/kZ)^*2 for k = 2..5: A126869, A047098, A107026, A304979, Richard Thompson's group F A246877. The cogrowth sequences for BS(N,N) for N = 2..10 are A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

Formula

Asymptotics: a(n) ~ (1/2) * 16^n * n^(-2).
Previous Showing 71-80 of 129 results. Next