cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 67 results. Next

A291284 Primes p such that p does not divide any term of the Apery-like sequence A290576.

Original entry on oeis.org

2, 5, 7, 13, 17, 19, 29, 37, 43, 47, 59, 61, 67, 71, 83, 89, 101, 109, 127, 139, 149, 167, 173, 191, 211, 233, 239, 241, 251, 257, 271, 277, 281, 307, 311, 313, 331, 337, 347, 349, 353, 359, 373, 379, 383, 409, 419, 421, 431, 433, 443
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

A002899 Number of n-step polygons on f.c.c. lattice.

Original entry on oeis.org

1, 0, 12, 48, 540, 4320, 42240, 403200, 4038300, 40958400, 423550512, 4434978240, 46982827584, 502437551616, 5417597053440, 58831951546368, 642874989479580, 7063600894137216, 77991775777488144, 864910651813116480
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of 2 X n matrices with entries from {1,2,3,4}, with (1) second row a (multiset) permutation of the first, and (2) no constant columns. - David Callan, Aug 25 2009
a(n) is the constant coefficient in the expansion of (x + y + z + 1/x + 1/y + 1/z + x/y + y/z + z/x + y/x + z/y + x/z)^n. - Seiichi Manyama, Oct 26 2019

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ Binomial[n, k]*(-4)^(n - k)*Sum[ Binomial[k, j]^2*Binomial[2k - 2j, k - j]*Binomial[2j, j], {j, 0, k}], {k, 0, n}]; Array[f, 20, 0]
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)*(-4)^(n-k)*sum(j=0, k, binomial(k, j)^2*binomial(2*k-2*j, k-j)*binomial(2*j, j)))};
    print(vector(20, n, a(n-1))) \\ David Broadhurst, Feb 06 2008; fixed by Vaclav Kotesovec, Apr 08 2016

Formula

G.f.: hypergeom([1/6, 1/3],[1],108*x^2*(4*x+1))^2. - Mark van Hoeij, Oct 29 2011
Recurrence: n^3*a(n) - 2*n*(2*n-1)*(n-1)*a(n-1) - 16*(n-1)*(5*n^2-10*n+6)*a(n-2) - 96*(n-1)*(n-2)*(2*n-3)*a(n-3) = 0. - R. J. Mathar, Dec 10 2013
a(n) ~ 2^(2*n-2) * 3^(n+3/2) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Apr 08 2016

Extensions

More terms from David Broadhurst, Feb 06 2008

A287316 Square array A(n,k) = (n!)^2 [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 15, 20, 1, 0, 1, 5, 28, 93, 70, 1, 0, 1, 6, 45, 256, 639, 252, 1, 0, 1, 7, 66, 545, 2716, 4653, 924, 1, 0, 1, 8, 91, 996, 7885, 31504, 35169, 3432, 1, 0, 1, 9, 120, 1645, 18306, 127905, 387136, 272835, 12870, 1, 0
Offset: 0

Views

Author

Peter Luschny, May 23 2017

Keywords

Comments

A287314 provide polynomials and A287315 rational functions generating the columns of the array.

Examples

			Arrays start:
k\n| 0  1    2      3         4        5          6           7
---|----------------------------------------------------------------
k=0| 1, 0,   0,      0,       0,       0,         0,          0, ... A000007
k=1| 1, 1,   1,      1,       1,       1,         1,          1, ... A000012
k=2| 1, 2,   6,     20,      70,     252,       924,       3432, ... A000984
k=3| 1, 3,  15,     93,     639,    4653,     35169,     272835, ... A002893
k=4| 1, 4,  28,    256,    2716,   31504,    387136,    4951552, ... A002895
k=5| 1, 5,  45,    545,    7885,  127905,   2241225,   41467725, ... A169714
k=6| 1, 6,  66,    996,   18306,  384156,   8848236,  218040696, ... A169715
k=7| 1, 7,  91,   1645,   36715,  948157,  27210169,  844691407, ...
k=8| 1, 8, 120,   2528,   66424, 2039808,  70283424, 2643158400, ... A385286
k=9| 1, 9, 153,   3681,  111321, 3965409, 159700401, 7071121017, ...
       A000384,A169711, A169712, A169713,                            A033935
		

Crossrefs

Rows: A000007 (k=0), A000012 (k=1), A000984 (k=2), A002893 (k=3), A002895 (k=4), A169714 (k=5), A169715 (k=6), A385286 (k=8).
Columns: A001477(n=1), A000384 (n=2), A169711 (n=3), A169712 (n=4), A169713 (n=5).
Cf. A033935 (diagonal), A287314, A287315, A287318.

Programs

  • Maple
    A287316_row := proc(k, len) local b, ser;
    b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);
    seq((i!)^2*coeff(ser,x,i), i=0..len-1) end:
    for k from 0 to 6 do A287316_row(k, 9) od;
    A287316_col := proc(n, len) local k, x;
    sum(z^k/k!^2, k = 0..infinity); series(%^x, z=0, n+1):
    unapply(n!^2*coeff(%, z, n), x); seq(%(j), j=0..len) end:
    for n from 0 to 7 do A287316_col(n, 9) od;
  • Mathematica
    Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (n!)^2, {n, 0, 6}], {k, 0,9}]
  • PARI
    A287316_row(K, N) = {
      my(x='x + O('x^(2*N-1)));
      Vec(serlaplace(serlaplace(substpol(besseli(0,2*x)^K, 'x^2, 'x))));
    };
    N=8; concat([vector(N, n, n==1)], vector(9, k, A287316_row(k, N))) \\ Gheorghe Coserea, Jan 12 2018
    
  • PARI
    {A(n, k) = if(n<0 || k<0, 0, n!^2 * polcoeff(besseli(0, 2*x + x*O(x^(2*n)))^k, 2*n))}; /* Michael Somos, Dec 30 2021 */
    
  • PARI
    A(k, n) = my(x='x+O('x^(n+1))); n!^2*polcoeff(hypergeom([], [1], x)^k, n); \\ Peter Luschny, Jun 24 2025
    
  • Python
    from math import comb
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A(n,k):
        if k <= 0: return 0**n
        return sum(A(i,k-1)*comb(n,i)**2 for i in range(n+1))
    for k in range(10): print([A(n, k) for n in range(8)])
    # Jeremy Tan, Dec 10 2021

Formula

A(n,k) = A287318(n,k) / binomial(2*n,n).
If a+b=k then A(n,k) = Sum_{i=0..n} A(i,a)*A(n-i,b)*binomial(n,i)^2 (Richmond and Shallit). In particular A(n,k) = Sum_{i=0..n} A(i,k-1)*binomial(n,i)^2. - Jeremy Tan, Dec 10 2021

A039699 Number of 4-dimensional cubic lattice walks that start and end at the origin after 2n steps, free to pass through origin at intermediate stages.

Original entry on oeis.org

1, 8, 168, 5120, 190120, 7939008, 357713664, 16993726464, 839358285480, 42714450658880, 2225741588095168, 118227198981126144, 6380762273973278464, 349019710593278412800, 19310744204362333900800, 1079054103459778710405120, 60818479243449308702049960
Offset: 0

Views

Author

Alessandro Zinani (alzinani(AT)tin.it)

Keywords

Comments

Generating function G(x) is D-finite with a singular point at x = 1/64 (cf. Graph Link). After summing 300000 terms, G(1/64) = 1.239466... and 1 - 1/G(1/64) = 0.193201... Convergence to A086232 is very slow. - Bradley Klee, Aug 20 2018
a(n) is also the constant term in the expansion of (w + 1/w + x + 1/x + y + 1/y + z + 1/z)^(2n). This follows directly from the sequence name, each variable corresponding to a single step in one of the four axis directions. - Christopher J. Smyth, Sep 28 2018

Examples

			a(5)=7939008, i.e., there are 7939008 different walks that start and end at origin of a 4-dimensional integer lattice after 2*5=10 steps, free to pass through origin at intermediate steps.
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 322-331.

Crossrefs

1-dimensional, 2-dimensional, 3-dimensional analogs are A000984, A002894, A002896. Pólya Constant: A086232.
Row k=4 of A287318.

Programs

  • Maple
    A039699 := n -> binomial(2*n,n)^2*hypergeom([1/2, -n, -n, -n],[1, 1, 1/2 - n], 1):
    seq(simplify(A039699(n)), n=0..14); # Peter Luschny, May 23 2017
  • Mathematica
    max = 30 (* must be even *); Partition[ CoefficientList[ Series[ BesselI[0, 2 x]^4, {x, 0, max}], x]*Range[0, max]!, 2][[All, 1]] (* Jean-François Alcover, Oct 05 2011 *)
    With[{nn=30},Take[CoefficientList[Series[BesselI[0,2x]^4,{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Aug 09 2013 *)
    RecurrenceTable[{256*(n-1)^2*(2*n-3)*(2*n-1)*a[n-2] - 4*(2*n-1)^2*(5*n^2-5*n+2)*a[n-1] + n^4*a[n]==0, a[0]==1, a[1]==8}, a, {n,0,100}] (* Bradley Klee, Aug 20 2018 *)
  • PARI
    C=binomial;
    A002895(n) = sum(k=0,n, C(n,k)^2 * C(2*n-2*k,n-k) * C(2*k,k) );
    a(n)= C(2*n,n) * A002895(n);
    /* Joerg Arndt, Apr 19 2013 */
    
  • Python
    from math import comb
    def A039699(n): return comb(n<<1,n)*((sum(comb(n,k)**2*comb(n-k<<1,n-k)*comb(m:=k<<1,k) for k in range(n+1>>1))<<1) + (0 if n&1 else comb(n,n>>1)**4)) # Chai Wah Wu, Jun 17 2025

Formula

E.g.f.: Sum_{n>=0} a(2*n) * x^(2*n)/(2*n)! = I_0(2*x)^4. (I = Modified Bessel function of the first kind).
a(n) = binomial(2*n,n)*A002895(n). - Mark van Hoeij, Apr 19 2013
a(n) = binomial(2*n,n)^2*hypergeom([1/2,-n,-n,-n],[1,1,1/2-n],1). - Peter Luschny, May 23 2017
a(n) ~ 2^(6*n+1) / (Pi*n)^2. - Vaclav Kotesovec, Nov 13 2017
From Bradley Klee, Aug 20 2018: (Start)
G.f.: Define G(x) = Sum_{n>=0} a(n)*x^n and G^(j) = (d/dx)^j G(x), then Sum_{j=0..4,k=0..5} M_{j,k}*G^(j)*x^k = 0, with
M={{-8, 768, 0, 0, 0, 0}, {1, -424, 14592, 0, 0, 0}, {0, 7, -1172, 25344, 0, 0}, {0, 0, 6, -640, 10240, 0}, {0, 0, 0, 1, -80, 1024}}.
Sum_{j=0..2,k=0..4} M_{j,k}*a(n-j)*n^k = 0, with
M={{0, 0, 0, 0, 1}, {-8, 52, -132, 160, -80}, {768, -3584, 5888, -4096, 1024}}.
(End)
a(n) = Sum_{i+j+k+l=n, 0<=i,j,k,l<=n} multinomial(2n [i,i,j,j,k,k,l,l]). - Shel Kaphan, Jan 16 2023

A169714 The function W_5(2n) (see Borwein et al. reference for definition).

Original entry on oeis.org

1, 5, 45, 545, 7885, 127905, 2241225, 41467725, 798562125, 15855173825, 322466645545, 6687295253325, 140927922498025, 3010302779775725, 65046639827565525, 1419565970145097545, 31249959913055650125, 693192670456484513025
Offset: 0

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Comments

Row sums of the fourth power of A008459. - Peter Bala, Mar 05 2013

Crossrefs

Programs

Formula

Sum_{n>=0} a(n)*x^n/n!^2 = (Sum_{n>=0} x^n/n!^2)^5 = BesselI(0, 2*sqrt(x))^5. - Peter Bala, Mar 05 2013
D-finite with recurrence: n^4*a(n) = (35*n^4 - 70*n^3 + 63*n^2 - 28*n + 5)*a(n-1) - (n-1)^2*(259*n^2 - 518*n + 285)*a(n-2) + 225*(n-2)^2*(n-1)^2*a(n-3). - Vaclav Kotesovec, Mar 09 2014
a(n) ~ 5^(2*n+5/2) / (16 * Pi^2 * n^2). - Vaclav Kotesovec, Mar 09 2014

A169715 The function W_6(2n) (see Borwein et al. reference for definition).

Original entry on oeis.org

1, 6, 66, 996, 18306, 384156, 8848236, 218040696, 5651108226, 152254667436, 4229523740916, 120430899525096, 3499628148747756, 103446306284890536, 3102500089343886696, 94219208840385966096, 2892652835496484004226, 89662253086458906345036
Offset: 0

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Comments

Row sums of the fifth power of A008459. - Peter Bala, Mar 05 2013
a(n)/6^(2n) is the probability that two throws of n 6-sided dice will give the same result - Henry Bottomley, Aug 30 2016

Crossrefs

Programs

  • Maple
    W := proc(n,s)
        local a,ai ;
        if s = 0 then
            return 1;
        end if;
        a := 0 ;
        for ai in combinat[partition](s/2) do
            if nops(ai) <= n then
                af := [op(ai),seq(0,i=1+nops(ai)..n)] ;
                a := a+combinat[numbperm](af)*(combinat[multinomial](s/2,op(ai)))^2 ;
            end if ;
        end do;
        a ;
    end proc:
    A169715 := proc(n)
        W(6,2*n) ;
    end proc: # R. J. Mathar, Mar 27 2012
  • Mathematica
    a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^6, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 30 2013, after Peter Bala *)
    max = 17; Total /@ MatrixPower[Table[Binomial[n, k]^2, {n, 0, max}, {k, 0, max}], 5] (* Jean-François Alcover, Mar 24 2015, after Peter Bala *)

Formula

Sum_{n>=0} a(n)*x^n/n!^2 = (Sum_{n>=0} x^n/n!^2)^6 = BesselI(0, 2*sqrt(x))^6. - Peter Bala, Mar 05 2013
Recurrence: n^5*a(n) = 2*(2*n-1)*(14*n^4 - 28*n^3 + 28*n^2 - 14*n + 3)*a(n-1) - 4*(n-1)^3*(196*n^2 - 392*n + 255)*a(n-2) + 1152*(n-2)^2*(n-1)^2*(2*n-3)*a(n-3). - Vaclav Kotesovec, Mar 09 2014
a(n) ~ 3^(2*n+3) * 4^(n-1) / (Pi*n)^(5/2). - Vaclav Kotesovec, Mar 09 2014

A271673 Number of n-step excursions on the 10-dimensional f.c.c. lattice.

Original entry on oeis.org

1, 0, 180, 5760, 355860, 24226560, 1923670800, 169658496000, 16291413249300, 1674631754611200, 181989927592033680, 20709782925396364800, 2449425950787336166800, 299337868552812779289600, 37621311095831818078152000
Offset: 0

Views

Author

Christoph Koutschan, Apr 12 2016

Keywords

Comments

a(n) = number of walks in the integer lattice Z^10 starting and ending at the origin, using only the steps of the form (s_1, ..., s_10) with s_1^2 + ... + s_10^2 = 2, i.e., each possible step has precisely two nonzero entries which can be +1 or -1.

Examples

			There is one walk with no steps.
No walk with a single steps returns to the origin.
The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(10,2).
		

Crossrefs

Cf. A002895, A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice), A271432 (d = 4), A271650 (d = 5), A271651 (d = 6), A271670 (d = 7), A271671 (d = 8), A271672 (d = 9), this sequence (d = 10), A271674 (d = 11).

Programs

  • Maple
    nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 10 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];
  • Mathematica
    nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 10, Floor[(nmax - n)/2], 0]}], {d1, 3, 10}]; First /@ T

Formula

a(n) conjecturally satisfies a linear recurrence equation of order 30 with polynomial coefficients of degree 274 (see link above).
The probability generating function P(z) = Sum_{n>=0} a(n)*(z/180)^n is given by the 10-fold integral (1/Pi)^10 Int_{0..Pi} ... Int_{0..Pi} 1/(1-z*lambda_10) dk_1 ... dk_10, where the structure function is defined as lambda_10 = (1/binomial(10,2)) Sum_{i=1..10} Sum_{j=(i+1)..10} cos(k_i)*cos(k_j). The function P(z) conjecturally satisfies a linear ODE of order 22 with polynomial coefficients of degree 300 (see link above).

A288457 Chebyshev coefficients of density of states of diamond lattice.

Original entry on oeis.org

1, -8, -32, 1024, -12800, 90112, -131072, -2097152, -78774272, 3080716288, -49736056832, 407753457664, -222801428480, -19645180411904, -494299196162048, 22797274090307584, -393216908922454016, 3294704322255781888, 1334801068806111232, -228652837223366918144, -4282607861714030428160, 222230748909257887842304
Offset: 0

Views

Author

Yen-Lee Loh, Jun 16 2017

Keywords

Comments

This is the sequence of integers z^n g_n for n=0,2,4,6,... where g_n are the coefficients in the Chebyshev polynomial expansion of the density of states of the diamond lattice (z=4), g(w) = 1 / (Pi*sqrt(1-w^2)) * Sum_{n>=0} (2-delta_n) g_n T_n(w). Here |w| <= 1 and delta is the Kronecker delta.
The Chebyshev coefficients, g_n, are related to the number of walks on the lattice that return to the origin, W_n, as g_n = Sum_{k=0..n} a_{nk} z^{-k} W_k, where z is the coordination number of the lattice and a_{nk} are the coefficients of Chebyshev polynomials such that T_n(x) = Sum_{k=0..n} a_{nk} x^k.
The author was unable to obtain a closed form for z^n g_n.

Crossrefs

Related to numbers of walks returning to origin, W_n, on diamond lattice (A002895).

Programs

  • Mathematica
    Wdia[n_] := If[OddQ[n], 0,
       Sum[Binomial[n/2,j]^2 Binomial[2j,j] Binomial[n-2j, n/2-j], {j, 0, n/2}]];
    ank[n_, k_] := SeriesCoefficient[ChebyshevT[n, x], {x, 0, k}];
    zng[n_] := Sum[ank[n, k]*4^(n-k)*Wdia[k], {k, 0, n}];
    Table[zng[n], {n,0,50}]

A362676 a(n) = Sum_{k = 0..n} 4^(n-k)*binomial(n,k)*binomial(n-1,k)*binomial(2*k,k).

Original entry on oeis.org

1, 4, 32, 328, 3840, 48504, 641984, 8765712, 122370048, 1736921560, 24975268032, 362872728816, 5317470233088, 78479369810352, 1165299414952320, 17393306836535328, 260791399517110272, 3925811865435871896, 59305018671515758784
Offset: 0

Views

Author

Peter Bala, Jul 03 2023

Keywords

Comments

The sequence of Franel numbers A000172 satisfies the identity A000172(n) = Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*binomial(n+2*k,2*k)*binomial(2*k,k). The present sequence comes from the following modification of the right-hand side of the identity: a(n) = Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*binomial(-n+k,k)* binomial(2*k,k), multipled by a factor (-1)^n to give positive terms.
The Franel numbers satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r. We conjecture that the present sequence satisfies the same supercongruences.
From Peter Bala, Jul 07 2023 (Start):
Compare with the Domb numbers A002895, which are defined by A002895(n) = Sum_{k = 0..n} binomial(n,k)^2 * binomial(2*n-2*k,n-k) * binomial(2*k,k).
The supercongruences A002895(n*p^r) == A002895(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and positive integers n and r (see Osburn and Sahu).
We conjecture that the present sequence satisfies the same supercongruences. (End)

Crossrefs

Programs

  • Maple
    seq(add(4^(n-k)*binomial(n,k)*binomial(n-1,k)*binomial(2*k,k), k = 0..n), n = 0..20);
    # alternative faster program for large n
    seq(simplify(4^n*hypergeom([-n, 1 - n, 1/2], [1, 1], 1)), n = 0..20);
    # alternative (Peter Bala Jul 07 2023)
    seq(add(binomial(n+k-1,k) * binomial(2*n-2*k,n-k) * binomial(2*k,k), k = 0..n), n = 0..20);
  • Mathematica
    Table[4^n * HypergeometricPFQ[{-n, 1 - n, 1/2}, {1, 1}, 1], {n, 0, 20}] (* Vaclav Kotesovec, Jul 04 2023 *)
  • Python
    from sympy import hyper, hyperexpand, S
    def A362676(n): return int(hyperexpand(hyper((-n, 1-n, S.Half), [1,1], 1))*(1<<(n<<1))) # Chai Wah Wu, Jul 10 2023

Formula

a(n) = 4^n * hypergeom ([-n, 1 - n, 1/2], [1, 1], 1).
From Vaclav Kotesovec, Jul 04 2023: (Start)
Recurrence: (n-1)*n^2*(3*n^2 - 9*n + 7)*a(n) = 4*(n-1)*(15*n^4 - 60*n^3 + 80*n^2 - 40*n + 8)*a(n-1) - 4*(n-2)*(4*n - 7)*(4*n - 5)*(3*n^2 - 3*n + 1)*a(n-2).
a(n) ~ 2^(4*n - 1/2) / (Pi*n). (End)
a(n) = Sum_{k = 0..n} (-1)^k * binomial(-n,k) * binomial(2*n-2*k,n-k) * binomial(2*k,k). Cf. A081085. Peter Bala, Jul 07 2023
a(n) = binomial(2*n,n)*hypergeom([-n, n, 1/2], [1, 1/2 - n], 1). - Peter Bala, Jul 07 2023

A169711 The function W_n(6) (see Borwein et al. reference for definition).

Original entry on oeis.org

1, 20, 93, 256, 545, 996, 1645, 2528, 3681, 5140, 6941, 9120, 11713, 14756, 18285, 22336, 26945, 32148, 37981, 44480, 51681, 59620, 68333, 77856, 88225, 99476, 111645, 124768, 138881, 154020, 170221, 187520, 205953, 225556, 246365, 268416, 291745, 316388
Offset: 1

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Crossrefs

The sequence in Table 1 of the Borwein et al. reference are A000384, A109711-A109713; A000984, A002893, A002895, A169714, A169715.
Column 3 of A287316.
Cf. A287314.

Programs

  • Magma
    [6*n^3-9*n^2+4*n: n in [1..40]]; // Vincenzo Librandi, May 28 2017
    
  • Maple
    A169711 := proc(n)
            W(n,6) ;
    end proc:
    seq(A169711(n),n=1..20) ; # uses W from A169715; R. J. Mathar, Mar 28 2012
    a := n -> 6*n^3 - 9*n^2 + 4*n: seq(a(n), n=1..33); # Peter Luschny, May 27 2017
  • Mathematica
    CoefficientList[Series[(1 + 16 x + 19 x^2) / (1 - x)^4, {x, 0, 50}], x] (* or *) Table[6 n^3 - 9 n^2 + 4 n, {n, 1, 40}] (* Vincenzo Librandi, May 28 2017 *)
    LinearRecurrence[{4,-6,4,-1},{1,20,93,256},40] (* Harvey P. Dale, Feb 27 2023 *)
  • PARI
    a(n)=6*n^3-9*n^2+4*n \\ Charles R Greathouse IV, Oct 18 2022

Formula

a(n) = 6*n^3 - 9*n^2 + 4*n. - Peter Luschny, May 27 2017
G.f.: x*(1+16*x+19*x^2)/(1-x)^4. - Vincenzo Librandi, May 28 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, May 28 2017
Previous Showing 41-50 of 67 results. Next