cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A002893 a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(2*k,k).

Original entry on oeis.org

1, 3, 15, 93, 639, 4653, 35169, 272835, 2157759, 17319837, 140668065, 1153462995, 9533639025, 79326566595, 663835030335, 5582724468093, 47152425626559, 399769750195965, 3400775573443089, 29016970072920387, 248256043372999089
Offset: 0

Views

Author

Keywords

Comments

This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
a(n) is the 2n-th moment of the distance from the origin of a 3-step random walk in the plane. - Peter M. W. Gill (peter.gill(AT)nott.ac.uk), Feb 27 2004
a(n) is the number of Abelian squares of length 2n over a 3-letter alphabet. - Jeffrey Shallit, Aug 17 2010
Consider 2D simple random walk on honeycomb lattice. a(n) gives number of paths of length 2n ending at origin. - Sergey Perepechko, Feb 16 2011
Row sums of A318397 the square of A008459. - Peter Bala, Mar 05 2013
Conjecture: For each n=1,2,3,... the polynomial g_n(x) = Sum_{k=0..n} binomial(n,k)^2*binomial(2k,k)*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
a(n) is the sum of the squares of the coefficients of (x + y + z)^n. - Michael Somos, Aug 25 2018
a(n) is the constant term in the expansion of (1 + (1 + x) * (1 + y) + (1 + 1/x) * (1 + 1/y))^n. - Seiichi Manyama, Oct 28 2019

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 639*x^4 + 4653*x^5 + 35169*x^6 + ...
G.f.: A(x) = 1/(1-3*x) + 6*x^2*(1-x)/(1-3*x)^4 + 90*x^4*(1-x)^2/(1-3*x)^7 + 1680*x^6*(1-x)^3/(1-3*x)^10 + 34650*x^8*(1-x)^4/(1-3*x)^13 + ... - _Paul D. Hanna_, Feb 26 2012
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Magma
    [&+[Binomial(n, k)^2 * Binomial(2*k, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 26 2018
    
  • Maple
    series(1/GaussAGM(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3)), x=0, 42) # Gheorghe Coserea, Aug 17 2016
    A002893 := n -> hypergeom([1/2, -n, -n], [1, 1], 4):
    seq(simplify(A002893(n)), n=0..20); # Peter Luschny, May 23 2017
  • Mathematica
    Table[Sum[Binomial[n,k]^2 Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Aug 19 2011 *)
    a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {1/2, -n, -n}, {1, 1}, 4]]; (* Michael Somos, Oct 16 2013 *)
    a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^3, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 30 2013 *)
    a[ n_] := If[ n < 0, 0, Block[ {x, y, z},  Expand[(x + y + z)^n] /. {t_Integer -> t^2, x -> 1, y -> 1, z -> 1}]]; (* Michael Somos, Aug 25 2018 *)
  • PARI
    {a(n) = if( n<0, 0, n!^2 * polcoeff( besseli(0, 2*x + O(x^(2*n+1)))^3, 2*n))};
    
  • PARI
    {a(n) = sum(k=0, n, binomial(n, k)^2 * binomial(2*k, k))}; /* Michael Somos, Jul 25 2007 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3 * x^(2*m)*(1-x)^m / (1-3*x+x*O(x^n))^(3*m+1)),n)} \\ Paul D. Hanna, Feb 26 2012
    
  • PARI
    N = 42; x='x + O('x^N); v = Vec(1/agm(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3))); vector((#v+1)\2, k, v[2*k-1])  \\ Gheorghe Coserea, Aug 17 2016
    
  • SageMath
    def A002893(n): return simplify(hypergeometric([1/2,-n,-n], [1,1], 4))
    [A002893(n) for n in range(31)] # G. C. Greubel, Jan 21 2023

Formula

a(n) = Sum_{m=0..n} binomial(n, m) * A000172(m). [Barrucand]
D-finite with recurrence: (n+1)^2 a(n+1) = (10*n^2+10*n+3) * a(n) - 9*n^2 * a(n-1). - Matthijs Coster, Apr 28 2004
Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0, 2*sqrt(x))^3. - Vladeta Jovovic, Mar 11 2003
a(n) = Sum_{p+q+r=n} (n!/(p!*q!*r!))^2 with p, q, r >= 0. - Michael Somos, Jul 25 2007
a(n) = 3*A087457(n) for n>0. - Philippe Deléham, Sep 14 2008
a(n) = hypergeom([1/2, -n, -n], [1, 1], 4). - Mark van Hoeij, Jun 02 2010
G.f.: 2*sqrt(2)/Pi/sqrt(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z))) * EllipticK(8*z^(3/2)/(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z)))). - Sergey Perepechko, Feb 16 2011
G.f.: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)*(1-x)^n / (1-3*x)^(3*n+1). - Paul D. Hanna, Feb 26 2012
Asymptotic: a(n) ~ 3^(2*n+3/2)/(4*Pi*n). - Vaclav Kotesovec, Sep 11 2012
G.f.: 1/(1-3*x)*(1-6*x^2*(1-x)/(Q(0)+6*x^2*(1-x))), where Q(k) = (54*x^3 - 54*x^2 + 9*x -1)*k^2 + (81*x^3 - 81*x^2 + 18*x -2)*k + 33*x^3 - 33*x^2 +9*x - 1 - 3*x^2*(1-x)*(1-3*x)^3*(k+1)^2*(3*k+4)*(3*k+5)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: G(0)/(2*(1-9*x)^(2/3)), where G(k) = 1 + 1/(1 - 3*(3*k+1)^2*x*(1-x)^2/(3*(3*k+1)^2*x*(1-x)^2 - (k+1)^2*(1-9*x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
a(n) = [x^(2n)] 1/agm(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3)). - Gheorghe Coserea, Aug 17 2016
0 = +a(n)*(+a(n+1)*(+729*a(n+2) -1539*a(n+3) +243*a(n+4)) +a(n+2)*(-567*a(n+2) +1665*a(n+3) -297*a(n+4)) +a(n+3)*(-117*a(n+3) +27*a(n+4))) +a(n+1)*(+a(n+1)*(-324*a(n+2) +720*a(n+3) -117*a(n+4)) +a(n+2)*(+315*a(n+2) -1000*a(n+3) +185*a(n+4)) +a(n+3)*(+80*a(n+3) -19*a(n+4))) +a(n+2)*(+a(n+2)*(-9*a(n+2) +35*a(n+3) -7*a(n+4)) +a(n+3)*(-4*a(n+3) +a(n+4))) for all n in Z. - Michael Somos, Oct 30 2017
G.f. y=A(x) satisfies: 0 = x*(x - 1)*(9*x - 1)*y'' + (27*x^2 - 20*x + 1)*y' + 3*(3*x - 1)*y. - Gheorghe Coserea, Jul 01 2018
Sum_{k>=0} binomial(2*k,k) * a(k) / 6^(2*k) = A086231 = (sqrt(3)-1) * (Gamma(1/24) * Gamma(11/24))^2 / (32*Pi^3). - Vaclav Kotesovec, Apr 23 2023
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=3*(-1 + 3*x)*T(x) + (1 - 20*x + 27*x^2)*T'(x) + x*(-1 + x)*(-1 + 9*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = (3/64)*(1 + 3*x)*(1 - 15*x + 75*x^2 + 3*x^3);
g3 = -(1/512)*(-1 + 6*x + 3*x^2)*(1 - 12*x + 30*x^2 - 540*x^3 + 9*x^4);
which determine an elliptic surface with four singular fibers. (End)
a(n) = Sum_{k = 0..n} binomial(n, k)^2 * binomial(3*k, 2*n) (Almkvist, p. 16). - Peter Bala, May 22 2025

A002895 Domb numbers: number of 2n-step polygons on diamond lattice.

Original entry on oeis.org

1, 4, 28, 256, 2716, 31504, 387136, 4951552, 65218204, 878536624, 12046924528, 167595457792, 2359613230144, 33557651538688, 481365424895488, 6956365106016256, 101181938814289564, 1480129751586116848, 21761706991570726096, 321401321741959062016
Offset: 0

Views

Author

Keywords

Comments

a(n) is the (2n)th moment of the distance from the origin of a 4-step random walk in the plane. - Peter M.W. Gill (peter.gill(AT)nott.ac.uk), Mar 03 2004
Row sums of the cube of A008459. - Peter Bala, Mar 05 2013
Conjecture: Let D(n) be the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to a(i+j) for all i,j = 0..n. Then the number D(n)/12^n is always a positive odd integer. - Zhi-Wei Sun, Aug 14 2013
It appears that the expansions exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 4*x + 22*x^2 + 152*x^3 + 1241*x^4 + ... and exp( Sum_{n >= 1} 1/4*a(n)*x^n/n ) = 1 + x + 4*x^2 + 25*x^3 + 199*x^4 + ... have integer coefficients. See A267219. - Peter Bala, Jan 12 2016
This is one of the Apéry-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Named after the British-Israeli theoretical physicist Cyril Domb (1920-2012). - Amiram Eldar, Mar 20 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Maple
    A002895 := n -> add(binomial(n,k)^2*binomial(2*n-2*k,n-k)*binomial(2*k,k), k=0..n): seq(A002895(n), n=0..25); # Wesley Ivan Hurt, Dec 20 2015
    A002895 := n -> binomial(2*n,n)*hypergeom([1/2, -n, -n, -n],[1, 1, 1/2 - n], 1):
    seq(simplify(A002895(n)), n=0..19); # Peter Luschny, May 23 2017
  • Mathematica
    Table[Sum[Binomial[n,k]^2 Binomial[2n-2k,n-k]Binomial[2k,k],{k,0,n}], {n,0,30}] (* Harvey P. Dale, Aug 15 2011 *)
    a[n_] = Binomial[2*n, n]*HypergeometricPFQ[{1/2, -n, -n, -n}, {1, 1, 1/2-n}, 1]; (* or *) a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^4, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Dec 30 2013, after Vladeta Jovovic *)
    max = 19; Total /@ MatrixPower[Table[Binomial[n, k]^2, {n, 0, max}, {k, 0, max}], 3] (* Jean-François Alcover, Mar 24 2015, after Peter Bala *)
  • PARI
    C=binomial;
    a(n) = sum(k=0,n, C(n,k)^2 * C(2*n-2*k,n-k) * C(2*k,k) );
    /* Joerg Arndt, Apr 19 2013 */
    
  • Python
    from math import comb
    def A002895(n): return (sum(comb(n,k)**2*comb(n-k<<1,n-k)*comb(m:=k<<1,k) for k in range(n+1>>1))<<1) + (0 if n&1 else comb(n,n>>1)**4) # Chai Wah Wu, Jun 17 2025

Formula

a(n) = Sum_{k=0..n} binomial(n, k)^2 * binomial(2n-2k, n-k) * binomial(2k, k).
D-finite with recurrence: n^3*a(n) = 2*(2*n-1)*(5*n^2-5*n+2)*a(n-1) - 64*(n-1)^3*a(n-2). - Vladeta Jovovic, Jul 16 2004
Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0, 2*sqrt(x))^4. - Vladeta Jovovic, Aug 01 2006
G.f.: hypergeom([1/6, 1/3],[1],108*x^2/(1-4*x)^3)^2/(1-4*x). - Mark van Hoeij, Oct 29 2011
From Zhi-Wei Sun, Mar 20 2013: (Start)
Via the Zeilberger algorithm, Zhi-Wei Sun proved that:
(1) 4^n*a(n) = Sum_{k = 0..n} (binomial(2k,k)*binomial(2(n-k),n-k))^3/ binomial(n,k)^2,
(2) a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*binomial(2k,n)*binomial(2k,k)* binomial(2(n-k),n-k). (End)
a(n) ~ 2^(4*n+1)/((Pi*n)^(3/2)). - Vaclav Kotesovec, Aug 20 2013
G.f. y=A(x) satisfies: 0 = x^2*(4*x - 1)*(16*x - 1)*y''' + 3*x*(128*x^2 - 30*x + 1)*y'' + (448*x^2 - 68*x + 1)*y' + 4*(16*x - 1)*y. - Gheorghe Coserea, Jun 26 2018
a(n) = Sum_{p+q+r+s=n} (n!/(p!*q!*r!*s!))^2 with p,q,r,s >= 0. See Verrill, p. 5. - Peter Bala, Jan 06 2020
From Peter Bala, Jul 25 2024: (Start)
a(n) = 2*Sum_{k = 1..n} (k/n)*binomial(n, k)^2*binomial(2*n-2*k, n-k)* binomial(2*k, k) for n >= 1.
a(n-1) = (1/2)*Sum_{k = 1..n} (k/n)^3*binomial(n, k)^2*binomial(2*n-2*k, n-k)* binomial(2*k, k) for n >= 1. Cf. A081085. (End)

Extensions

More terms from Vladeta Jovovic, Mar 11 2003

A287316 Square array A(n,k) = (n!)^2 [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 15, 20, 1, 0, 1, 5, 28, 93, 70, 1, 0, 1, 6, 45, 256, 639, 252, 1, 0, 1, 7, 66, 545, 2716, 4653, 924, 1, 0, 1, 8, 91, 996, 7885, 31504, 35169, 3432, 1, 0, 1, 9, 120, 1645, 18306, 127905, 387136, 272835, 12870, 1, 0
Offset: 0

Views

Author

Peter Luschny, May 23 2017

Keywords

Comments

A287314 provide polynomials and A287315 rational functions generating the columns of the array.

Examples

			Arrays start:
k\n| 0  1    2      3         4        5          6           7
---|----------------------------------------------------------------
k=0| 1, 0,   0,      0,       0,       0,         0,          0, ... A000007
k=1| 1, 1,   1,      1,       1,       1,         1,          1, ... A000012
k=2| 1, 2,   6,     20,      70,     252,       924,       3432, ... A000984
k=3| 1, 3,  15,     93,     639,    4653,     35169,     272835, ... A002893
k=4| 1, 4,  28,    256,    2716,   31504,    387136,    4951552, ... A002895
k=5| 1, 5,  45,    545,    7885,  127905,   2241225,   41467725, ... A169714
k=6| 1, 6,  66,    996,   18306,  384156,   8848236,  218040696, ... A169715
k=7| 1, 7,  91,   1645,   36715,  948157,  27210169,  844691407, ...
k=8| 1, 8, 120,   2528,   66424, 2039808,  70283424, 2643158400, ... A385286
k=9| 1, 9, 153,   3681,  111321, 3965409, 159700401, 7071121017, ...
       A000384,A169711, A169712, A169713,                            A033935
		

Crossrefs

Rows: A000007 (k=0), A000012 (k=1), A000984 (k=2), A002893 (k=3), A002895 (k=4), A169714 (k=5), A169715 (k=6), A385286 (k=8).
Columns: A001477(n=1), A000384 (n=2), A169711 (n=3), A169712 (n=4), A169713 (n=5).
Cf. A033935 (diagonal), A287314, A287315, A287318.

Programs

  • Maple
    A287316_row := proc(k, len) local b, ser;
    b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);
    seq((i!)^2*coeff(ser,x,i), i=0..len-1) end:
    for k from 0 to 6 do A287316_row(k, 9) od;
    A287316_col := proc(n, len) local k, x;
    sum(z^k/k!^2, k = 0..infinity); series(%^x, z=0, n+1):
    unapply(n!^2*coeff(%, z, n), x); seq(%(j), j=0..len) end:
    for n from 0 to 7 do A287316_col(n, 9) od;
  • Mathematica
    Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (n!)^2, {n, 0, 6}], {k, 0,9}]
  • PARI
    A287316_row(K, N) = {
      my(x='x + O('x^(2*N-1)));
      Vec(serlaplace(serlaplace(substpol(besseli(0,2*x)^K, 'x^2, 'x))));
    };
    N=8; concat([vector(N, n, n==1)], vector(9, k, A287316_row(k, N))) \\ Gheorghe Coserea, Jan 12 2018
    
  • PARI
    {A(n, k) = if(n<0 || k<0, 0, n!^2 * polcoeff(besseli(0, 2*x + x*O(x^(2*n)))^k, 2*n))}; /* Michael Somos, Dec 30 2021 */
    
  • PARI
    A(k, n) = my(x='x+O('x^(n+1))); n!^2*polcoeff(hypergeom([], [1], x)^k, n); \\ Peter Luschny, Jun 24 2025
    
  • Python
    from math import comb
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A(n,k):
        if k <= 0: return 0**n
        return sum(A(i,k-1)*comb(n,i)**2 for i in range(n+1))
    for k in range(10): print([A(n, k) for n in range(8)])
    # Jeremy Tan, Dec 10 2021

Formula

A(n,k) = A287318(n,k) / binomial(2*n,n).
If a+b=k then A(n,k) = Sum_{i=0..n} A(i,a)*A(n-i,b)*binomial(n,i)^2 (Richmond and Shallit). In particular A(n,k) = Sum_{i=0..n} A(i,k-1)*binomial(n,i)^2. - Jeremy Tan, Dec 10 2021

A169715 The function W_6(2n) (see Borwein et al. reference for definition).

Original entry on oeis.org

1, 6, 66, 996, 18306, 384156, 8848236, 218040696, 5651108226, 152254667436, 4229523740916, 120430899525096, 3499628148747756, 103446306284890536, 3102500089343886696, 94219208840385966096, 2892652835496484004226, 89662253086458906345036
Offset: 0

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Comments

Row sums of the fifth power of A008459. - Peter Bala, Mar 05 2013
a(n)/6^(2n) is the probability that two throws of n 6-sided dice will give the same result - Henry Bottomley, Aug 30 2016

Crossrefs

Programs

  • Maple
    W := proc(n,s)
        local a,ai ;
        if s = 0 then
            return 1;
        end if;
        a := 0 ;
        for ai in combinat[partition](s/2) do
            if nops(ai) <= n then
                af := [op(ai),seq(0,i=1+nops(ai)..n)] ;
                a := a+combinat[numbperm](af)*(combinat[multinomial](s/2,op(ai)))^2 ;
            end if ;
        end do;
        a ;
    end proc:
    A169715 := proc(n)
        W(6,2*n) ;
    end proc: # R. J. Mathar, Mar 27 2012
  • Mathematica
    a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^6, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 30 2013, after Peter Bala *)
    max = 17; Total /@ MatrixPower[Table[Binomial[n, k]^2, {n, 0, max}, {k, 0, max}], 5] (* Jean-François Alcover, Mar 24 2015, after Peter Bala *)

Formula

Sum_{n>=0} a(n)*x^n/n!^2 = (Sum_{n>=0} x^n/n!^2)^6 = BesselI(0, 2*sqrt(x))^6. - Peter Bala, Mar 05 2013
Recurrence: n^5*a(n) = 2*(2*n-1)*(14*n^4 - 28*n^3 + 28*n^2 - 14*n + 3)*a(n-1) - 4*(n-1)^3*(196*n^2 - 392*n + 255)*a(n-2) + 1152*(n-2)^2*(n-1)^2*(2*n-3)*a(n-3). - Vaclav Kotesovec, Mar 09 2014
a(n) ~ 3^(2*n+3) * 4^(n-1) / (Pi*n)^(5/2). - Vaclav Kotesovec, Mar 09 2014

A287317 Number of 5-dimensional cubic lattice walks that start and end at origin after 2n steps, free to pass through origin at intermediate stages.

Original entry on oeis.org

1, 10, 270, 10900, 551950, 32232060, 2070891900, 142317232200, 10277494548750, 770878551371500, 59577647564312020, 4717432065143561400, 381091087190569291900, 31308955091335405435000, 2609450031306515140215000, 220199552765301571338488400
Offset: 0

Views

Author

Peter Luschny, May 23 2017

Keywords

Crossrefs

Case k=5 of A287318.
1-4 dimensional analogs are A000984, A002894, A002896, A039699.

Programs

  • Maple
    A287317_list := proc(len) series(BesselI(0, 2*sqrt(x))^5, x, len);
    seq((2*i)!*coeff(%, x, i), i=0..len-1) end: A287317_list(16);
  • Mathematica
    Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^5, {x, 0, n}] (2 n) !, {n, 0, 15}]
    Table[Binomial[2n,n]^2 Sum[(Binomial[n,j]^4/Binomial[2n,2j]) HypergeometricPFQ[{-j,-j,-j}, {1,1/2-j}, 1/4], {j,0,n}], {n,0,15}]
    Table[Sum[(2 n)!/(i! j! k! l! (n-i-j-k-l)!)^2, {i,0,n}, {j,0,n-i}, {k,0,n-i-j}, {l,0,n-i-j-k}], {n,0,30}] (* Shel Kaphan, Jan 24 2023 *)

Formula

a(n) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^5.
a(n) = binomial(2*n,n)*A169714(n).
a(n) ~ 2^(2*n) * 5^(2*n + 5/2) / (16 * Pi^(5/2) * n^(5/2)). - Vaclav Kotesovec, Nov 13 2017
a(n) = Sum_{i+j+k+l+m=n, 0<=i,j,k,l,m<=n} multinomial(2n, [i,i,j,j,k,k,l,l,m,m]). - Shel Kaphan, Jan 24 2023

Extensions

Moved original definition to formula section and reworded definition descriptively similar to sequence A039699, by Dave R.M. Langers, Oct 12 2022

A169711 The function W_n(6) (see Borwein et al. reference for definition).

Original entry on oeis.org

1, 20, 93, 256, 545, 996, 1645, 2528, 3681, 5140, 6941, 9120, 11713, 14756, 18285, 22336, 26945, 32148, 37981, 44480, 51681, 59620, 68333, 77856, 88225, 99476, 111645, 124768, 138881, 154020, 170221, 187520, 205953, 225556, 246365, 268416, 291745, 316388
Offset: 1

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Crossrefs

The sequence in Table 1 of the Borwein et al. reference are A000384, A109711-A109713; A000984, A002893, A002895, A169714, A169715.
Column 3 of A287316.
Cf. A287314.

Programs

  • Magma
    [6*n^3-9*n^2+4*n: n in [1..40]]; // Vincenzo Librandi, May 28 2017
    
  • Maple
    A169711 := proc(n)
            W(n,6) ;
    end proc:
    seq(A169711(n),n=1..20) ; # uses W from A169715; R. J. Mathar, Mar 28 2012
    a := n -> 6*n^3 - 9*n^2 + 4*n: seq(a(n), n=1..33); # Peter Luschny, May 27 2017
  • Mathematica
    CoefficientList[Series[(1 + 16 x + 19 x^2) / (1 - x)^4, {x, 0, 50}], x] (* or *) Table[6 n^3 - 9 n^2 + 4 n, {n, 1, 40}] (* Vincenzo Librandi, May 28 2017 *)
    LinearRecurrence[{4,-6,4,-1},{1,20,93,256},40] (* Harvey P. Dale, Feb 27 2023 *)
  • PARI
    a(n)=6*n^3-9*n^2+4*n \\ Charles R Greathouse IV, Oct 18 2022

Formula

a(n) = 6*n^3 - 9*n^2 + 4*n. - Peter Luschny, May 27 2017
G.f.: x*(1+16*x+19*x^2)/(1-x)^4. - Vincenzo Librandi, May 28 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, May 28 2017

A361364 Number of 5-dimensional cubic lattice walks that start and end at origin after 2n steps, not touching origin at intermediate stages.

Original entry on oeis.org

1, 10, 170, 6500, 332050, 19784060, 1296395700, 90616189800, 6637652225250, 503852804991500, 39337349077483420, 3142010167321271000, 255747325678297576100, 21150729618673827139000, 1773152567858996728205000, 150409554094012703302602000, 12890454660664800562838261250
Offset: 0

Views

Author

Shel Kaphan, Mar 09 2023

Keywords

Comments

In Novak's note it is mentioned that if P(z) and Q(z) are the g.f.s for the probabilities of indecomposable and decomposable loops, respectively, that P(z) = 1 - 1/Q(z). This works equally well using loop counts rather than probabilities. The g.f.s may be expressed by the series constructed from the sequences of counts of loops of length 2*n. Q(z) for the 5-d case is the series corresponding to A287317.
To satisfy this g.f. equation, a(0) should be 0, but we give it as 1 since there is one trivial loop of 0 steps, and for consistency with related sequences.
To obtain the probability of returning to the point of origin for the first time after 2*n steps, divide a(n) by the total number of walks of length 2*n in d dimensions: (2*d)^(2*n) = 100^n.

Crossrefs

Cf. A287317, A039699 (number of walks that return to the origin in 2n steps).
Number of walks that return to the origin for the first time in 2n steps, in 1..4 dimensions: |A002420|, A054474, A049037, A359801.
Column k=5 of A361397.
Cf. A169714.

Programs

  • Mathematica
    walk5d[n_] :=
     Sum[(2 n)!/(i! j! k! l! (n - i - j - k - l)!)^2, {i, 0, n}, {j, 0,
       n - i}, {k, 0, n - i - j}, {l, 0, n - i - j - k}]; invertSeq[seq_] :=
     CoefficientList[1 - 1/SeriesData[x, 0, seq, 0, Length[seq], 1], x]; invertSeq[Table[walk5d[n], {n, 0, 15}]]

Formula

G.f.: 2 - 1/Integral_{t=0..oo} exp(-t)*BesselI(0,2*t*sqrt(x))^5 dt.
INVERTi transform of A169714.
Showing 1-7 of 7 results.