cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 111 results. Next

A049433 Numbers k such that k! - (k-1)! - 1 is prime.

Original entry on oeis.org

3, 4, 6, 8, 9, 12, 28, 78, 99, 184, 286, 291, 398, 411, 600, 718, 732, 889, 1963, 2240, 2242, 2533, 8800, 11403, 18335, 20277, 21029
Offset: 1

Views

Author

Paul Jobling (paul.jobling(AT)whitecross.com)

Keywords

Comments

There is no further term up to 1400. - Farideh Firoozbakht, Jul 18 2003
a(25) > 12000. [Donovan Johnson, Dec 18 2009]

Examples

			6 is a term since 6! - (6-1)! - 1 = 599 is prime.
		

Crossrefs

Formula

a(n) = A090704(n) + 1 = n*n! + 1 = ((n+1)-1)*n! + 1 = (n+1)! - n! + 1 .

Extensions

More terms from Farideh Firoozbakht, Jul 18 2003
Corrected offset, edited definition and a(19)-a(24) from Donovan Johnson, Dec 18 2009
a(25)-a(27) from Michael S. Branicky, Jun 13 2025

A064144 a(n) is the number of divisors of n!+1.

Original entry on oeis.org

2, 2, 2, 3, 3, 4, 3, 4, 8, 4, 2, 6, 4, 4, 8, 32, 8, 64, 4, 4, 8, 8, 12, 4, 4, 4, 2, 4, 8, 32, 16, 16, 32, 4, 32, 64, 2, 4, 16, 128, 2, 8, 16, 8, 8, 8, 16, 4, 32, 32, 64, 16, 16, 4, 4, 16, 8, 16, 4, 16, 16, 8, 32, 8
Offset: 1

Views

Author

Vladeta Jovovic, Sep 11 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ Print[ DivisorSigma[0, n! + 1]], {n, 1, 40} ]
  • PARI
    a(n) = numdiv(n! + 1); \\ Harry J. Smith, Sep 09 2009
    
  • Python
    from math import factorial
    from sympy import divisor_count
    def A064144(n): return divisor_count(factorial(n)+1) # Chai Wah Wu, Oct 20 2023

Formula

a(n) = tau(n!+1).

Extensions

More terms from Robert G. Wilson v, Oct 04 2001
a(42)-a(64) from Harry J. Smith, Sep 09 2009
Edited by Jon E. Schoenfield, Jun 21 2018

A088054 Factorial primes: primes which are within 1 of a factorial number.

Original entry on oeis.org

2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999
Offset: 1

Views

Author

Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Nov 02 2003

Keywords

Comments

Conjecture: 3 is the intersection of A002981 and A002982.

Examples

			3! + 1 = 7; 7! - 1 = 5039.
39916801 is a term because 11! + 1 is prime.
		

Crossrefs

Union of A055490 and A088332.

Programs

  • Mathematica
    t = {}; Do[ If[PrimeQ[n! - 1], AppendTo[t, n! - 1]]; If[PrimeQ[n! + 1], AppendTo[t, n! + 1]], {n, 50}]; t (* Robert G. Wilson v *)
    Union[Select[Range[50]!-1, PrimeQ], Select[Range[50]!+1, PrimeQ]] (Noe)
    fp[n_] := Module[{nf=n!}, Select[{nf-1,nf+1},PrimeQ]]; Flatten[ Table[ fp[i],{i,50}]] (* Harvey P. Dale, Dec 18 2010 *)
    Select[Flatten[#+{-1,1}&/@(Range[50]!)],PrimeQ] (* Harvey P. Dale, Apr 08 2019 *)
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A088054_gen(): # generator of terms
        f = 1
        for k in count(1):
            f *= k
            if isprime(f-1):
                yield f-1
            if isprime(f+1):
                yield f+1
    A088054_list = list(islice(A088054_gen(),10)) # Chai Wah Wu, Feb 18 2022

Extensions

Corrected by Paul Muljadi, Oct 11 2005
More terms from Robert G. Wilson v and T. D. Noe, Oct 12 2005

A093804 Primes p such that p! + 1 is also prime.

Original entry on oeis.org

2, 3, 11, 37, 41, 73, 26951, 110059, 150209
Offset: 1

Views

Author

Jason Earls, May 19 2004

Keywords

Comments

Or, numbers n such that Sum_{d|n} d! is prime.
The prime 26951 from A002981 (n!+1 is prime) is a member since Sum_{d|n} d! = n!+1 if n is prime. - Jonathan Sondow, Jan 30 2005
a(n) are the primes in A002981[n] = {0, 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, 872, 1477, 6380, 26951, ...} Numbers n such that n! + 1 is prime. Corresponding primes of the form p! + 1 are listed in A103319[n] = {3, 7, 39916801, 13763753091226345046315979581580902400000001, 33452526613163807108170062053440751665152000000001, ...}. - Alexander Adamchuk, Sep 23 2006

Examples

			Sum_{d|3} d! = 1! + 3! = 7 is prime, so 3 is a member.
		

Crossrefs

Programs

Extensions

One more term from Alexander Adamchuk, Sep 23 2006
a(8)=110059 (found on Jun 11 2011, by PrimeGrid), added by Arkadiusz Wesolowski, Jun 28 2011
a(9)=150209 (found on Jun 09 2012, by Rene Dohmen), added by Jinyuan Wang, Jan 20 2020

A064164 EHS numbers: k such that there is a prime p satisfying k! + 1 == 0 (mod p) and p !== 1 (mod k).

Original entry on oeis.org

8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85
Offset: 1

Views

Author

R. K. Guy, Sep 20 2001

Keywords

Comments

The complement of this sequence (A064295) is a superset of A002981, that is, terms of A002981 do not appear in this sequence.
Hardy & Subbarao prove that this sequence is infinite, see their Theorem 2.12. - Charles R Greathouse IV, Sep 10 2015

Crossrefs

The smallest associated primes p are given in A064229.

Programs

  • Mathematica
    Do[k = 1; While[p = Prime[k]; k < 10^8 && Not[ Nor[ Mod[n! + 1, p] != 0, Mod[p, n] == 1]], k++ ]; If[k != 10^8, Print[n, " ", p]], {n, 2, 88}]
  • PARI
    is(n)=my(f=factor(n!+1)[,1]); for(i=1,#f, if(f[i]%n != 1, return(n>1))); 0 \\ Charles R Greathouse IV, Sep 10 2015

Extensions

Corrected and extended by Don Reble, Sep 23 2001

A084749 Numbers m such that m! + p is a prime, where p is the smallest prime > m.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 10, 33, 44, 48, 52, 64, 73, 92, 119, 182, 487, 603, 987, 4884, 6822, 8070, 11079, 13659, 17659
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 16 2003

Keywords

Comments

Next term, if it exists, is >4800. - Ryan Propper, Jan 02 2007
From Farideh Firoozbakht, Oct 21 2009: (Start)
Numbers corresponding to a(19)-a(24) are probable primes.
There is no further term up to 8300. (End)

Examples

			727 = 6! + 7 is a prime but 8! + 11 is composite hence 6 is a member but 8 is not.
7 is in the sequence because 7!=5040, nextprime(7)=11 and 5040+11 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[k!+NextPrime[k]], Print[k]], {k, 0, 1525}] (* Farideh Firoozbakht, Feb 26 2004 *)
    Select[Range[0,500],PrimeQ[#!+NextPrime[#]]&] (* The program generates the first 19 terms of the sequence. *) (* Harvey P. Dale, Jul 16 2025 *)

Extensions

More terms from Farideh Firoozbakht, Feb 26 2004
Edited by N. J. A. Sloane at the suggestion of Artur Jasinski, Apr 14 2008
a(22)-a(24) from Farideh Firoozbakht, Oct 21 2009
a(25) from Michael S. Branicky, Aug 05 2024
a(26)-a(27) from Michael S. Branicky, May 25 2025

A084846 mu(n!+1), where mu is the Moebius function (A008683).

Original entry on oeis.org

-1, -1, -1, -1, 0, 0, 1, 0, 1, -1, 1, -1, 0, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 0, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1
Offset: 0

Views

Author

Rick L. Shepherd, Jun 10 2003

Keywords

Examples

			a(6)=1 because 6!+1 = 721 = 7 * 103, the product of two different primes and thus mu(6!+1) = (-1)^2 = 1.
		

Crossrefs

Cf. A008683 (mu(n)), A054990 (bigomega(n!+1)), A066856 (omega(n!+1)), A064237 (n!+1 divisible by a square), A002981 (n!+1 is prime).

Programs

  • Magma
    [MoebiusMu(Factorial(n)+1) : n in [1..45]];
    
  • Mathematica
    MoebiusMu[Range[0, 50]! + 1] (* Paolo Xausa, Feb 07 2025 *)
  • PARI
    for(n=0,45,print1(moebius(n!+1),","))

Formula

If n is in A064237, then a(n) = 0. Otherwise a(n) = (-1)^A054990(n) = (-1)^A066856(n). - Max Alekseyev, Oct 08 2019

Extensions

a(112) corrected, a(113)-a(114) added by Max Alekseyev, May 28 2015
a(106)-a(107) corrected by Amiram Eldar, Oct 03 2019

A090660 Numbers n such that n*nextprime((n-1)!)-nextprime(n!) < 0.

Original entry on oeis.org

3, 4, 12, 28, 38, 42, 74, 78, 117, 155, 321, 341, 400, 428, 873, 1478, 6381, 26952
Offset: 1

Views

Author

Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Dec 15 2003

Keywords

Comments

3*nextprime((3-1)!) - nextprime(3!) = 3*nextprime(2!) - nextprime(3!) = 3*2 - 7 = -1.
For n>2 n!+1 is prime <==> nextprime((n+1)!)>(n+1)nextprime(n!) and we can conjecture that for n>2 if n!+1 is prime then (n+1)!+1 is not prime.

Crossrefs

Equals A002981 + 1.

Programs

  • Mathematica
    NextPrim[ n_ ] := Block[ {k = n + 1}, While[ !PrimeQ[ k ], k++ ]; k ]; Select[ Range[ 260 ], #*NextPrim[ (# - 1)! ] - NextPrim[ #! ] < 0 & ] (* Robert G. Wilson v *)

Extensions

Better description from Don Reble, Dec 20 2003
Three more terms from Robert G. Wilson v, Dec 20 2003
a(14) from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Jan 05 2004

A151892 Numbers m such that m! + (next prime after m!) is prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 14, 15, 20, 25, 32, 34, 35, 67, 89, 191, 316, 411, 1213, 1280, 2022, 2267
Offset: 1

Views

Author

Artur Jasinski, Apr 12 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[n! + NextPrime[n! ]], AppendTo[a, n]], {n, 200}]; a (* Artur Jasinski *)
    Select[Range[420],PrimeQ[#!+NextPrime[#!]]&] (* Harvey P. Dale, Aug 20 2021 *)

Extensions

a(17)-a(18) from Robert G. Wilson v, Jun 11 2010
a(19)-a(20) from Michael S. Branicky, May 27 2023
a(21)-a(22) from Michael S. Branicky, Aug 03 2024

A151893 a(n) = smallest number k such that n! + k-th prime after n! is prime.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 4, 10, 2, 4, 3, 1, 1, 4, 2, 9, 14, 1, 6, 14, 6, 5, 1, 11, 3, 35, 14, 20, 4, 1, 10, 1, 1, 6, 37, 33, 25, 17, 62, 2, 5, 26, 12, 10, 11, 37, 9, 9, 4, 50, 32, 9, 9, 7, 9, 47, 10, 40, 80, 60, 3, 18, 6, 2, 1
Offset: 1

Views

Author

Artur Jasinski, Apr 12 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 1; While[ ! PrimeQ[n! + NextPrime[n!, k]], k++ ]; Print[k]; AppendTo[a, k], {n, 1, 200}]; a
Previous Showing 51-60 of 111 results. Next