cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A052228 Automorphic primes: p such that p^p ends with the digits of p.

Original entry on oeis.org

5, 11, 31, 41, 61, 71, 101, 151, 193, 251, 401, 499, 557, 601, 701, 751, 1151, 1201, 1249, 1301, 1601, 1693, 1801, 1901, 1951, 2351, 2551, 2801, 3001, 3301, 3701, 4001, 4201, 4751, 4801, 4951, 4999, 5101, 5351, 5501, 5701, 5801, 6101, 6151, 6301, 6551
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 30 2000

Keywords

Examples

			11 is in the sequence because 11 is prime and 11^11=285311670611 ends in 11.
		

Crossrefs

Cf. A003226.

Programs

  • Mathematica
    Select[ Prime@ Range@863, PowerMod[ #, #, 10^Floor[Log[10, # ] + 1]] == # &] (* Robert G. Wilson v Sep 25 2006 *)
    Select[Prime[Range[850]],PowerMod[#,#,10^IntegerLength[#]]==#&] (* Harvey P. Dale, Mar 05 2015 *)

Extensions

More terms from Jason Earls, Jan 02 2002

A290788 Values of n such that 6^n ends in n, or expomorphic numbers in "base" 6.

Original entry on oeis.org

6, 56, 656, 8656, 38656, 238656, 7238656, 47238656, 447238656, 7447238656, 27447238656, 227447238656, 3227447238656
Offset: 1

Views

Author

Bernard Schott, Aug 10 2017

Keywords

Comments

Definition: For positive integers b (as base) and n, the positive integer (allowing initial 0's) a(n) is expomorphic relative to base b (here 6) if a(n) has exactly n decimal digits and if b^a(n) == a(n) (mod 10^n) or, equivalently, b^a(n) ends in a(n). [See Crux Mathematicorum link.]

Examples

			6^6 = 46656 ends in 6, so 6 is a term.
6^56 = ...656 ends in 56, so 56 is another term.
		

Crossrefs

Cf. A064541 (base 2), A183613 (base 3), A288845 (base 4), A289138, A306570 (base 5), A306686 (base 9).
Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers).

Programs

  • Mathematica
    Select[Range[10^6], PowerMod[6, #, 10^(1 + Floor@ Log10[#])] == # &] (* Michael De Vlieger, Apr 13 2021 *)
  • PARI
    is(n)=my(m=10^#digits(n)); Mod(6,m)^n==n \\ Charles R Greathouse IV, Aug 10 2017

Extensions

a(6)-a(9) from Charles R Greathouse IV, Aug 10 2017
a(10)-a(13) from Chai Wah Wu, Apr 13 2021

A067270 Numbers m such that m-th triangular number (A000217) ends in m.

Original entry on oeis.org

0, 1, 5, 25, 625, 9376, 90625, 890625, 7109376, 12890625, 212890625, 1787109376, 81787109376, 59918212890625, 259918212890625, 3740081787109376, 56259918212890625, 256259918212890625, 7743740081787109376
Offset: 1

Views

Author

Joseph L. Pe, Feb 21 2002

Keywords

Comments

Thanks to David W. Wilson for the proof that this sequence is a proper subset of A003226.
Also, numbers m such that the m-th k-gonal number ends in m for k == 1, 3, 5, or 9 (mod 10). - Robert Dawson, Jul 09 2018
This sequence is the intersection of A093534 and A301912. - Robert Dawson, Aug 01 2018

Examples

			The 5th triangular = 15 ends in 5, hence 5 is a term of the sequence.
		

Crossrefs

Proper subset of A003226. Cf. A007185, A018247, A016090, A018248.
Intersection of A093534 and A301912.

Programs

  • Mathematica
    (* a5=A018247 less the commas; a6=A018248 less the commas; *)
    b5 = FromDigits[ Reverse[ IntegerDigits[a5]]]; b6 = FromDigits[ Reverse[ IntegerDigits[a6]]]; f[0] = 1; f[n_] := Block[{c5 = Mod[b5, 10^n], c6 = Mod[b6, 10^n]}, If[ Mod[c5(c5 + 1)/2, 10^n] == c5, c5, c6]]; Union[ Table[ f[n], {n, 0, 20}]]
  • Python
    from itertools import count, islice
    from sympy.ntheory.modular import crt
    def A067270_gen(): # generator of terms
        a = 0
        yield from (0,1)
        for n in count(0):
            if (b := int(min(crt(m:=(1<<(n+1),5**n),(0,1))[0], crt(m,(1,0))[0]))) > a:
                yield b
                a = b
    A067270_list = list(islice(A067270_gen(),15)) # Chai Wah Wu, Jul 25 2022

Extensions

Edited and extended by Robert G. Wilson v, Nov 20 2002
0 prepended by David A. Corneth, Aug 02 2018

A227071 Let s(m) = the set of k > 0 such that k^m ends with k. Then a(n) = least m such that s(m) = s(n).

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 3, 2, 9, 2, 11, 2, 5, 2, 3, 6, 17, 2, 3, 2, 21, 2, 3, 2, 9, 26, 3, 2, 5, 2, 11, 2, 33, 2, 3, 6, 5, 2, 3, 2, 41, 2, 3, 2, 5, 6, 3, 2, 17, 2, 51, 2, 5, 2, 3, 6, 9, 2, 3, 2, 21, 2, 3, 2, 65, 6, 3, 2, 5, 2, 11, 2, 9, 2, 3, 26, 5, 2, 3, 2, 81, 2
Offset: 1

Views

Author

T. D. Noe, Jul 29 2013

Keywords

Comments

See A227070 for more details and for the numbers n such that n = a(n).
The entries in the b-file have been tentatively obtained by comparing the terms < 10^30 in the sets s(n). - Giovanni Resta, Jul 30 2013

Crossrefs

Cf. A003226 (n=2), A033819 (n=3), A068407 (n=5), A068408 (n=6).
Cf. A072496 (n=11), A072495 (n=21), A076650 (n=26).
Cf. A227070 (n such that n = a(n)).

Programs

  • Mathematica
    ts = {{}}; t2 = {1}; te = {1}; Do[s = Select[Range[0, 10^7], PowerMod[#, n, 10^IntegerLength[#]] == # &]; If[MemberQ[ts, s], AppendTo[t2, te[[Position[ts, s, 1, 1][[1, 1]]]]], AppendTo[ts, s]; AppendTo[te, n]; AppendTo[t2, n]], {n, 2, 82}]; t2

Formula

Conjecture: a(n+1) = A132741(n) + 1. - Eric M. Schmidt, Jul 30 2013

Extensions

Mathematica program and some entries corrected by Giovanni Resta, Jul 30 2013

A269588 Numbers n such that n^2 ends with the digits of n reversed (A004086(n)).

Original entry on oeis.org

1, 5, 6, 963, 9867, 65766, 69714, 6317056, 90899553, 169605719, 4270981082, 96528287587, 465454256742, 692153612536, 182921919071841, 655785969669834, 650700037578750084, 125631041500927357539, 673774165549097456624, 16719041449406813636569
Offset: 1

Views

Author

Keywords

Comments

a(29)>10^32 (if it exists)

Examples

			6317056^2 = 39905196507136 which ends with 6507136, so 6317056 is a term.
		

Crossrefs

Subsequence of A115761.

Programs

  • Mathematica
    Select[Range[10^7], Function[k, Take[IntegerDigits[#^2], -Length@ k] == Reverse@ k]@ IntegerDigits@ # &] (* Michael De Vlieger, Mar 04 2016 *)
  • PARI
    isA269588(n)=dn = digits(n); rn = subst(Polrev(dn), x, 10); nbd = #dn; (n^2 - rn) % 10^nbd == 0; \\ Michel Marcus, Mar 01 2016
    
  • PARI
    \\ printA269588len(d) prints all terms of the sequence with d digits
    rev(n) = eval(concat(Vecrev(Str(n))));
    { printA269588len(d) = my(l, u, n); l=ceil(d/2); u=floor(d/2); for(y=0, 10^l-1, n=rev(y^2 % 10^u)*10^l+y; if(#Str(n)==d && Mod(n, 10^d)^2==rev(n), print(n)); ); }
    \\ Max Alekseyev, Mar 07 2016

Extensions

a(18)-a(20) from Max Alekseyev, Mar 07 2016
a(21)-a(27) from Robert Gerbicz, Apr 03 2016
a(28) from Dieter Beckerle, Jun 09 2016

A094534 Centered hexamorphic numbers: the k-th centered hexagonal number, 3k(k-1)+1, ends in k.

Original entry on oeis.org

1, 7, 17, 51, 67, 167, 251, 417, 501, 667, 751, 917, 1251, 1667, 5001, 5417, 6251, 6667, 10417, 16667, 50001, 56251, 60417, 66667, 166667, 260417, 406251, 500001, 666667, 760417, 906251, 1406251, 1666667, 5000001, 5260417, 6406251, 6666667, 16666667
Offset: 1

Views

Author

Robert Munafo, May 07 2004

Keywords

Comments

Given any number in the sequence, if you remove one or more digits from the beginning you always get another number in the sequence. This makes it easy to find higher terms -- just take an existing term and try adding a digit (with perhaps additional 0's) at the beginning. For example, to 6251 prepend 5 to get a 5-digit term, or 40 or 90 to get a 6-digit term.

Examples

			417 is in the sequence because if n=417, 3n(n-1)+1=520417, which ends in 417.
		

Crossrefs

Programs

  • PARI
    isok(n) = {my(m = 3*n*(n-1)+1); (m - n) % 10^#Str(n) == 0; } \\ Michel Marcus, Jun 21 2018

Formula

10^(d-1) <= n < 10^d; 3n(n-1)+1 == n mod 10^d

Extensions

Name changed by Robert Dawson, Jun 20 2018

A227070 Powers n such that the set s(n) = {k > 0 such that k^n ends with k} does not occur for smaller n.

Original entry on oeis.org

1, 2, 3, 5, 6, 9, 11, 17, 21, 26, 33, 41, 51, 65, 81, 101, 126, 129, 161, 201, 251, 257, 321, 401, 501, 513, 626, 641, 801, 1001, 1025, 1251, 1281, 1601, 2001, 2049, 2501, 2561, 3126, 3201, 4001, 4097, 5001, 5121, 6251, 6401, 8001, 8193, 10001
Offset: 1

Views

Author

T. D. Noe, Jul 29 2013

Keywords

Comments

These numbers might be called automorphic powers because the sets s(n) are called automorphic numbers. It appears that all numbers of the form 1 + 5^i are here. In fact, these appear to produce the only even numbers here. The set s(4) equals s(2). The set s(7) equals s(3). The set s(9) does not differ from s(5) until k = 10443. The set s(17) does not differ from s(9) until k = 108307. The sequence also has 126, 201, 251, 501, and 626, but there may be missing numbers.
Entries a(17)-a(49) have been tentatively obtained by comparing the terms < 10^30 in the sets s(n), for 2 <= n <= 10001. - Giovanni Resta, Jul 30 2013

Crossrefs

Cf. A003226 (n=2), A033819 (n=3), A068407 (n=5), A068408 (n=6).
Cf. A072496 (n=11), A072495 (n=21), A076650 (n=26).
Cf. A227071.

Programs

  • Mathematica
    ts = {}; t = {}; Do[s = Select[Range[11000000], PowerMod[#, n, 10^IntegerLength[#]] == # &]; If[! MemberQ[ts, s], Print[n]; AppendTo[ts, s]; AppendTo[t, n]], {n, 2, 101}]; t = Join[{1}, t]

Formula

Conjecture: a(n+1) = A003592(n) + 1. - Eric M. Schmidt, Jul 30 2013

Extensions

a(17)-a(49) from Giovanni Resta, Jul 30 2013

A270343 Numbers k that end with ( sum of digits of k )^2.

Original entry on oeis.org

0, 1, 81, 3144, 3256, 6225, 6484, 6576, 7121, 7529, 7676, 9100, 9324, 9361, 9729, 9784, 12144, 12256, 15225, 15484, 15576, 16121, 16529, 16676, 18100, 18324, 18361, 18729, 18784, 21144, 21256, 24225, 24484, 24576, 25121
Offset: 1

Views

Author

Soumil Mandal, Mar 15 2016

Keywords

Comments

All terms end with a digit from the set S = {0,1,4,5,6,9}.
The sum of the digits of the numbers repeat and also change with regular intervals. For example, the sum of the digits S1 = {12,16,15,22,24,11,23,26,10,18,19,27,28} which is followed by 3144 to 8784, 12144 to 18784, 21144 to 27784, 30144 to 36784. Again S2 = {21,25,15,22,24,11,23,26,10,18,19,27,28} is followed by 39441 to 45784, 48441 to 54784, 57441 to 67784, 66441 to 72784. It can be seen that a set containing 13 elements repeats itself for 4 consecutive ranges.

Examples

			For k=3256, sum of digits is 16 and 16^2 is 256.
For k=7121, sum of digits is 11 and 11^2 is 121.
For k=18784, sum of digits is 22 and 22^2 is 484.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 20000], Function[n, Function[k, If[n >= k, FromDigits@ Take[#, -IntegerLength@ k] == k, False]][Total[#]^2] &@ IntegerDigits@ n]] (* Michael De Vlieger, Mar 15 2016 *)
    esdQ[n_]:=Module[{idn=IntegerDigits[n],idn2=IntegerDigits[ Total[ IntegerDigits[ n]]^2]},Take[ idn,-Length[idn2]]==idn2]; Select[ Range[ 0,26000],esdQ]//Quiet (* Harvey P. Dale, Jan 01 2022 *)
  • PARI
    isok(n) = {sds = sumdigits(n)^2; nbs = #Str(sds); ((n - sds) % 10^nbs) == 0;} \\ Michel Marcus, Mar 16 2016
    
  • Python
    for i in range(0,200000):
        res = pow((sum(map(int,str(i)))),2)
        if(i%pow(10,len(str(res)))==res):print(i)
    # Soumil Mandal, Mar 17 2016

A308262 Numbers m such that A048385(m) ends with m.

Original entry on oeis.org

0, 1, 5, 6, 10, 11, 25, 36, 50, 51, 60, 61, 100, 101, 110, 111, 250, 251, 360, 361, 425, 500, 501, 510, 511, 600, 601, 610, 611, 936, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 1936, 2500, 2501, 2510, 2511, 3600, 3601, 3610, 3611, 4250, 4251, 5000, 5001
Offset: 1

Views

Author

Rémy Sigrist, May 17 2019

Keywords

Comments

If m belongs to this sequence, then A048385(m) belongs to this sequence.
If m belongs to this sequence, then 10*m and 10*m + 1 belong to this sequence.
This sequence contains A007088.
All terms belong to A052419.
Let U be the infinite word ...|A048385^2(16)|A048385(16)|16425 and V be the infinite word ...|A048385^2(81)|A048385(81)|81936. The terms of this sequence consist of the last x digits of either U or V followed by y digits in {0,1}, where x and y are nonnegative integers. - Charlie Neder, May 17 2019

Examples

			The first terms, alongside A048385(a(n)), are:
  n   a(n)  A048385(a(n))
  --  ----  -------------
   1     0              0
   2     1              1
   3     5             25
   4     6             36
   5    10             10
   6    11             11
   7    25            425
   8    36            936
   9    50            250
  10    51            251
  11    60            360
  12    61            361
		

Crossrefs

Programs

  • MATLAB
    m=1;
    for u=0:5001
        digit=dec2base(u,10)-'0';digitp=digit.^2;
        aa=str2num(strrep(num2str(digitp), ' ', ''));
        digitaa=dec2base(aa,10)-'0';
           if mod(aa,10^length(digit))==u
            sol(m)=u; m=m+1;
           end
    end
    sol % Marius A. Burtea, May 17 2019
  • PARI
    See Links section.
    

A383821 3-automorphic numbers: positive integers k such that 3k^2 ends with k.

Original entry on oeis.org

2, 5, 7, 67, 75, 92, 667, 792, 875, 6667, 6875, 9792, 66667, 69792, 96875, 296875, 369792, 666667, 2369792, 4296875, 6666667, 62369792, 66666667, 262369792, 404296875, 666666667, 6666666667, 7262369792, 9404296875, 27262369792, 39404296875, 66666666667, 639404296875
Offset: 1

Views

Author

Shyam Sunder Gupta, May 11 2025

Keywords

Comments

All 3-automorphic numbers end in 2, 5, or 7 only.
From Michael S. Branicky, May 11 2025: (Start)
Terms of successively larger digits can be created by prepending digits on the left of previous terms; for each length, only 3 positive such "seeds" are valid (some may have leading zeros and thus do not contribute terms at that length).
Infinite since 6..67, with i 6's and then a 7 is a term for all i >= 0.
a(2774) has 1001 digits. (End)

Examples

			67 is in the sequence because 3*67^2 = 13467 which ends with 67.
		

Crossrefs

Essentially the union of A030985, A030986, and A067275.

Programs

  • Mathematica
    Select[Range[10^7],IntegerDigits[#]==Take[IntegerDigits[3#^2],-IntegerLength[#]]&] (* James C. McMahon, May 16 2025 *)

Extensions

More terms from Michael S. Branicky, May 11 2025
Previous Showing 31-40 of 49 results. Next