cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 81 results. Next

A298910 Numbers m such that there are precisely 19 groups of order m.

Original entry on oeis.org

1029, 5145, 6591, 7803, 8001, 11319, 11739, 12789, 17157, 17493, 20577, 21567, 23667, 23877, 27993, 31311, 32955, 33411, 34671, 34713, 39015, 39753, 40005, 42189, 42861, 45675, 47691, 48363, 49833
Offset: 1

Views

Author

Muniru A Asiru, Jan 28 2018

Keywords

Examples

			For m = 1029, the 19 groups are C1029, C147 x C7, C3 x ((C7 x C7) : C7), C3 x (C49 : C7), C21 x C7 x C7, C343 : C3, C49 x (C7 : C3), C7 x (C49 : C3), (C49 x C7) : C3, (C49 x C7) : C3, ((C7 x C7) : C7) : C3, ((C7 x C7) : C7) : C3, ((C7 x C7) : C7) : C3, (C49 : C7) : C3, C7 x ((C7 x C7) : C3), C7 x ((C7 x C7) : C3), (C7 x C7 x C7) : C3, (C7 x C7 x C7) : C3, C7 x C7 x (C7 : C3) where C means the Cyclic group of the stated order and the symbols x and : mean direct and semidirect products respectively.
		

Crossrefs

Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), this sequence (k=19), A298911 (k=20).

Programs

  • Maple
    with(GroupTheory):
    for n from 1 to 3*10^5 do if NumGroups(n) = 19 then print(n); fi; od;

Formula

Sequence is { m | A000001(m) = 19 }.

Extensions

Shortened to remove possibly incorrect terms by Andrew Howroyd, Jan 28 2022

A004019 a(0) = 0; for n > 0, a(n) = (a(n-1) + 1)^2.

Original entry on oeis.org

0, 1, 4, 25, 676, 458329, 210066388900, 44127887745906175987801, 1947270476915296449559703445493848930452791204, 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352025
Offset: 0

Views

Author

Keywords

Comments

Take the standard rooted binary tree of depth n, with 2^(n+1) - 1 labeled nodes. Here is a picture of the tree of depth 3:
R
/ \
/ \
/ \
/ \
/ \
o o
/ \ / \
/ \ / \
o o o o
/ \ / \ / \ / \
o o o o o o o o
Let the number of rooted subtrees be s(n). For example, for n = 1 the s(2) = 4 subtrees are:
R R R R
/ \ / \
o o o o
Then s(n+1) = 1 + 2*s(n) + s(n)^2 = (1+s(n))^2 and so s(n) = a(n+1).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.

Crossrefs

Programs

  • Haskell
    a004019 n = a004019_list !! n
    a004019_list = iterate (a000290 . (+ 1)) 0
    -- Reinhard Zumkeller, Feb 01 2013
    
  • Magma
    [n le 1 select 0 else  (Self(n-1)+1)^2: n in [1..15]]; // Vincenzo Librandi, Oct 05 2015
    
  • Mathematica
    Table[Nest[(1 + #)^2 &, 0, n], {n, 0, 12}] (* Vladimir Joseph Stephan Orlovsky, Jul 20 2011 *)
    NestList[(#+1)^2&,0,10] (* Harvey P. Dale, Oct 08 2011 *)
  • PARI
    a(n) = if(n==0, 0, (a(n-1) + 1)^2);
    vector(20, n, a(n-1)) \\ Altug Alkan, Oct 06 2015

Formula

a(n) = A003095(n)^2 = A003095(n+1) - 1 = A056207(n+1) + 1.
It follows from Aho and Sloane that there is a constant c such that a(n) is the nearest integer to c^(2^n). In fact a(n+1) = nearest integer to b^(2^n) - 1 where b = 2.25851845058946539883779624006373187243427469718511465966.... - Henry Bottomley, Aug 30 2005
a(n) is the number of root ancestral configurations for fully symmetric matching gene trees and species trees with 2^n leaves, a(n) = A355108(2^n). - Noah A Rosenberg, Jun 22 2022

Extensions

One more term from Henry Bottomley, Jul 24 2000
Additional comments from Max Alekseyev, Aug 30 2005

A003316 Sum of lengths of longest increasing subsequences of all permutations of n elements.

Original entry on oeis.org

1, 3, 12, 58, 335, 2261, 17465, 152020, 1473057, 15730705, 183571817, 2324298010, 31737207034, 464904410985, 7272666016725, 121007866402968, 2133917906948645, 39756493513248129, 780313261631908137, 16093326774432620874, 347958942706716524974
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008304 (which is concerned with runs of adjacent elements).
Row sums of A214152.

Programs

  • Maple
    h:= proc(l) local n; n:= nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
          add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
    g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
                    add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
    a:= n-> add(k* (g(n-k, k, [k])), k=1..n):
    seq(a(n), n=1..22);  # Alois P. Heinz, Jul 05 2012
  • Mathematica
    h[l_List] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := Sum[k*g[n-k, k, {k}], {k, 1, n}]; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 11 2014, after Alois P. Heinz *)

Formula

From Alois P. Heinz, Nov 04 2018: (Start)
a(n) = Sum_{k=1..n} k * A047874(n,k).
A321274(n) < a(n) < A321273(n) for n > 1. (End)
A theorem of Vershik and Kerov (1977) implies that a(n) ~ 2 * sqrt(n) * n!. - Ludovic Schwob, Apr 04 2024

Extensions

Corrected a(13) and extended beyond a(16) by Alois P. Heinz, Jul 05 2012

A056868 Numbers that are not nilpotent numbers.

Original entry on oeis.org

6, 10, 12, 14, 18, 20, 21, 22, 24, 26, 28, 30, 34, 36, 38, 39, 40, 42, 44, 46, 48, 50, 52, 54, 55, 56, 57, 58, 60, 62, 63, 66, 68, 70, 72, 74, 75, 76, 78, 80, 82, 84, 86, 88, 90, 92, 93, 94, 96, 98, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 116, 117, 118, 120
Offset: 1

Views

Author

N. J. A. Sloane, Sep 02 2000

Keywords

Comments

A number is nilpotent if every group of order n is nilpotent.
The sequence "Numbers of the form (k*i + 1)*k*j with i, j >= 1 and k >= 2" agrees with this for the first 146 terms but then differs. Cf. A300737. - Gionata Neri, Mar 11 2018

Examples

			From _Bernard Schott_, Dec 19 2021: (Start)
There are 2 groups with order 6: C_6 that is cyclic so nilpotent, and the symmetric group S_3 that is not nilpotent, hence 6 is a term.
There are also 2 groups with order 10: C_10 that is cyclic so nilpotent, and the dihedral group D_10 that is not nilpotent, hence 10 is another term. (End)
		

Crossrefs

Complement of A056867.
Subsequence of A060652; A068919 is a subsequence.

Programs

  • Haskell
    a056868 n = a056868_list !! (n-1)
    a056868_list = filter (any (== 1) . pks) [1..] where
       pks x = [p ^ k `mod` q | let fs = a027748_row x, q <- fs,
                                (p,e) <- zip fs $ a124010_row x, k <- [1..e]]
    -- Reinhard Zumkeller, Jun 28 2013
  • Mathematica
    nilpotentQ[n_] := With[{f = FactorInteger[n]}, Sum[ Boole[ Mod[p[[1]]^p[[2]], q[[1]]] == 1], {p, f}, {q, f}]] == 0; Select[ Range[120], !nilpotentQ[#]& ] (* Jean-François Alcover, Sep 03 2012 *)
  • PARI
    is(n)=my(f=factor(n));for(k=1,#f[,1], for(j=1,f[k,2], if(gcd(n, f[k,1]^j-1)>1, return(1)))); 0 \\ Charles R Greathouse IV, Sep 18 2012
    

Formula

n is in this sequence if p^k = 1 mod q for primes p and q dividing n such that p^k divides n. - Charles R Greathouse IV, Aug 27 2012

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A050384 Nonprimes such that n and phi(n) are relatively prime.

Original entry on oeis.org

1, 15, 33, 35, 51, 65, 69, 77, 85, 87, 91, 95, 115, 119, 123, 133, 141, 143, 145, 159, 161, 177, 185, 187, 209, 213, 215, 217, 221, 235, 247, 249, 255, 259, 265, 267, 287, 295, 299, 303, 319, 321, 323, 329, 335, 339, 341, 345, 365, 371, 377, 391, 393, 395, 403
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

Also nonprimes n such that there is only one group of order n, i.e., A000001(n) = 1.
Intersection of A018252 and A003277.
Also numbers n such that n and A051953(n) are relatively prime. - Labos Elemer
Apart from the first term, this is a subsequence of A024556. - Charles R Greathouse IV, Apr 15 2015
Every Carmichael number and each of its nonprime divisors is in this sequence. - Emmanuel Vantieghem, Apr 20 2015
An alternative definition (excluding the 1): k is strongly prime to n <=> k is prime to n and k does not divide n - 1 (cf. A181830). n is cyclic if n is prime to phi(n). n is strongly cyclic if phi(n) is strongly prime to n. The a(n) are the strongly cyclic numbers apart from a(1). - Peter Luschny, Nov 14 2018

Crossrefs

If the primes are included we get A003277. Cf. A000001, A000010 (phi), A181830, A181837.

Programs

  • Maple
    isStrongPrimeTo := (n, k) -> (igcd(n, k) = 1) and not (irem(n-1, k) = 0):
    isStrongCyclic := n -> isStrongPrimeTo(n, numtheory:-phi(n)):
    [1, op(select(isStrongCyclic, [$(2..404)]))]; # Peter Luschny, Dec 13 2021
  • Mathematica
    Select[Range[450], !PrimeQ[#] && GCD[#, EulerPhi[#]] == 1&] (* Harvey P. Dale, Jan 31 2011 *)
  • PARI
    is(n)=!isprime(n) && gcd(eulerphi(n),n)==1 \\ Charles R Greathouse IV, Apr 15 2015
    
  • Sage
    def isStrongPrimeTo(n, m): return gcd(n, m) == 1 and not m.divides(n-1)
    def isStrongCyclic(n): return isStrongPrimeTo(n, euler_phi(n))
    [1] + [n for n in (1..403) if isStrongCyclic(n)] # Peter Luschny, Nov 14 2018

A209211 Numbers n such that n-1 and phi(n) are relatively prime.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 54, 56, 58, 60, 62, 64, 68, 72, 74, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 114, 116, 118, 120, 122, 126, 128, 132, 134, 136, 138
Offset: 1

Views

Author

Keywords

Comments

A063994(a(n)) = 1. - Reinhard Zumkeller, Mar 02 2013
a(n) = A111305(n-2) for n >= 3. - Emmanuel Vantieghem, Jul 03 2013
n such that A049559(n) = 1. Includes A100484 and A000079. - Robert Israel, Nov 09 2015
All terms except the first one are even. Missing even terms are A039772. - Robert G. Wilson v, Sep 26 2016
Numbers n such that A187730(n) = 1. - Thomas Ordowski, Dec 29 2016

Crossrefs

Programs

  • Haskell
    a209211 n = a209211_list !! (n-1)
    a209211_list = filter (\x -> (x - 1) `gcd` a000010 x == 1) [1..]
    -- Reinhard Zumkeller, Mar 02 2013
    
  • Maple
    select(n -> igcd(n-1, numtheory:-phi(n)) = 1, [$1..1000]); # Robert Israel, Nov 09 2015
  • Mathematica
    Select[Range[200], GCD[# - 1, EulerPhi[#]] == 1 &]
  • PARI
    isok(n) = gcd(n-1, eulerphi(n)) == 1; \\ Michel Marcus, Sep 26 2016

A056867 Nilpotent numbers: n such that every group of order n is nilpotent.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 59, 61, 64, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 95, 97, 99, 101, 103, 107, 109, 113, 115, 119, 121, 123, 125, 127, 128, 131, 133, 135, 137, 139
Offset: 1

Views

Author

N. J. A. Sloane, Sep 02 2000

Keywords

Comments

Contains exactly the numbers n for which gcd(n,|A153038(n)|)=1 [Pazderski]. - R. J. Mathar, Apr 03 2012
A group G of order m is nilpotent iff it has a quotient group of order m/d for each divisor d of m. - Des MacHale and Bernard Schott, Jul 15 2022

Crossrefs

Complement of A056868.

Programs

  • GAP
    IsNilpotentInt := function(n)
      local f, i, j; f := PrimePowersInt(n);
      for i in [1..Length(f)/2] do
        for j in [1..f[2*i]] do
          if Gcd(f[2*i-1]^j-1, n) > 1 then return false; fi;
        od;
      od;
      return true;
    end;
    Filtered([1..140], IsNilpotentInt); # Gheorghe Coserea, Dec 02 2017
  • Mathematica
    A153038[1] = 1; A153038[n_] := (x = 1; Do[p = f[[1]]; e = f[[2]]; x = x*Product[1 - p^s, {s, 1, e}], {f, FactorInteger[n]}]; x); A056867 = Select[Range[140], GCD[#, Abs[A153038[#]]] == 1 &] (* Jean-François Alcover, May 15 2012, after R. J. Mathar *)
  • PARI
    is(n)=my(f=factor(n));for(k=1,#f[,1], for(j=1,f[k,2], if(gcd(n, f[k,1]^j-1)>1, return(0)))); 1 \\ Charles R Greathouse IV, Sep 18 2012
    

Formula

n is in this sequence if p^k is not congruent to 1 mod q for any primes p and q dividing n such that p^e but not p^(e+1) divides n and k <= e. - Charles R Greathouse IV, Aug 27 2012

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A003040 Highest degree of an irreducible representation of symmetric group S_n of degree n.

Original entry on oeis.org

1, 1, 2, 3, 6, 16, 35, 90, 216, 768, 2310, 7700, 21450, 69498, 292864, 1153152, 4873050, 16336320, 64664600, 249420600, 1118939184, 5462865408, 28542158568, 117487079424, 547591590000, 2474843571200, 12760912164000, 57424104738000, 295284192952320
Offset: 1

Views

Author

Keywords

Comments

Highest number of standard tableaux of the Ferrers diagrams of the partitions of n. Example: a(4) = 3 because to the partitions 4, 31, 22, 211, and 1111 there correspond 1, 3, 2, 3, and 1 standard tableaux, respectively. - Emeric Deutsch, Oct 02 2015

Examples

			a(5) = 6 because the degrees for S_5 are 1,1,4,4,5,5,6.
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups. 2nd ed., Oxford University Press, 1950, p. 265.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A117500 gives the corresponding partitions of n.

Programs

  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
    a[n_] := a[n] = g[n, n, {}] // Max;
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 23 2024, after Alois P. Heinz in A060240 *)
  • Sage
    def A003040(n):
        res = 1
        for P in Partitions(n):
            res = max(res, P.dimension())
        return res
    # Eric M. Schmidt, May 07 2013

Extensions

Entry revised and extended by N. J. A. Sloane, Apr 28 2006
a(29) corrected by Eric M. Schmidt, May 07 2013

A060679 Orders of non-cyclic groups.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 93, 94, 96, 98, 99, 100, 102, 104, 105, 106, 108
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001

Keywords

Comments

Numbers n such that x^n==1 (mod n) has solutions 2<=x<=n - Benoit Cloitre, May 10 2002

Crossrefs

Complement of A003277.

Programs

Formula

a(n) = n + O(n/log log log n). - Charles R Greathouse IV, Apr 16 2012

Extensions

More terms from Vladeta Jovovic, Jul 05 2001

A072994 Number of solutions to x^n==1 (mod n), 1<=x<=n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 1, 8, 1, 6, 1, 8, 3, 2, 1, 8, 5, 2, 9, 4, 1, 4, 1, 16, 1, 2, 1, 12, 1, 2, 3, 16, 1, 12, 1, 4, 3, 2, 1, 16, 7, 10, 1, 8, 1, 18, 5, 8, 3, 2, 1, 16, 1, 2, 9, 32, 1, 4, 1, 8, 1, 4, 1, 24, 1, 2, 5, 4, 1, 12, 1, 32, 27, 2, 1, 24, 1, 2, 1, 8, 1, 12, 1, 4, 3
Offset: 1

Views

Author

Benoit Cloitre, Aug 21 2002

Keywords

Comments

More generally, if the equation a(x)*m=x has solutions, solutions are congruent to m: a(x)*7=x for x=7, 14, 21, 28, 49, 56, 63, 98, 112, ... . There are some composite values of m such that a(x)*m=x has solutions, as m=15. a(n) coincides with A009195(n) at many values of n, but not at n = 20, 30, 40, 42, 52, 60, 66, 68, 70, 78, 80, 84, 90, 100, ... . It seems also that for n large enough sum_{k=1..n} a(k) > n*log(n)*log(log(n)).
Similar (if not the same) coincidences and differences occur between A072995 and A050399. Sequence A072989 lists these indices. - M. F. Hasler, Feb 23 2014

Programs

  • Maple
    1, seq(nops(select(t -> t^n mod n = 1, [$1..n-1])),n=2..100); # Robert Israel, Dec 07 2014
  • Mathematica
    f[n_] := (d = If[ OddQ@ n, 1, 2]; d*Length@ Select[ Range[ n/d], PowerMod[#, n, n] == 1 &]); f[1] = f[2] = 1; Array[f, 93] (* or *)
    f[n_] := Length@ Select[ Range@ n, PowerMod[#, n, n] == 1 &]; f[n_] := 1 /; n<2; Array[f, 93] (* Robert G. Wilson v, Dec 06 2014 *)
  • PARI
    A072994=n->sum(k=1,n,Mod(k,n)^n==1) \\ M. F. Hasler, Feb 23 2014

Formula

For n>0, a(A003277(n)) = 1, a(2^n) = 2^(n-1), a(A065119(n)) = A065119(n)/3.
For n>1, a(A026383(n)) = A026383(n)/5.

Extensions

Corrected by T. D. Noe, May 19 2007
Previous Showing 31-40 of 81 results. Next