cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 65 results. Next

A171631 Triangle read by rows: T(n,k) = n*(binomial(n-2, k-1) + n*binomial(n-2, k)), n > 0 and 0 <= k <= n - 1.

Original entry on oeis.org

1, 4, 2, 9, 12, 3, 16, 36, 24, 4, 25, 80, 90, 40, 5, 36, 150, 240, 180, 60, 6, 49, 252, 525, 560, 315, 84, 7, 64, 392, 1008, 1400, 1120, 504, 112, 8, 81, 576, 1764, 3024, 3150, 2016, 756, 144, 9, 100, 810, 2880, 5880, 7560, 6300, 3360, 1080, 180, 10, 121, 1100
Offset: 1

Views

Author

Roger L. Bagula, Dec 13 2009

Keywords

Comments

If T(0,0) = 0 is prepended, then row sums give A001788.

Examples

			Triangle begins:
n\k|  0    1     2     3     4     6    7    8  9
-------------------------------------------------
1  |  1
2  |  4    2
3  |  9   12     3
4  | 16   36    24     4
5  | 25   80    90    40     5
6  | 36  150   240   180    60     6
7  | 49  252   525   560   315    84    7
8  | 64  392  1008  1400  1120   504  112    8
9  | 81  576  1764  3024  3150  2016  756  144  9
... reformatted. - _Franck Maminirina Ramaharo_, Oct 02 2018
		

References

  • Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, Dover Publications, 1945, p. 32.

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[n*(x + n)*(x + 1)^(n - 2), x], {n, 1, 12}]//Flatten
  • Maxima
    T(n, k) := n*(binomial(n - 2, k - 1) + n*binomial(n - 2, k))$
    tabl(nn) := for n:1 thru nn do print(makelist(T(n, k), k, 0, n - 1))$ /* Franck Maminirina Ramaharo, Oct 02 2018 */

Formula

Let p(x;n) = (x + 1)^n. Then row n are the coefficients in the expansion of p''(x;n) - x*p'(x;n) + n*p(x;n) = n*(x + n)*(x + 1)^(n - 2).
From Franck Maminirina Ramaharo, Oct 02 2018: (Start)
T(n,1) = A000290(n).
T(n,2) = A011379(n).
T(n,3) = 3*A002417(n-2).
T(n,n-2) = A046092(n-1).
T(n,n-3) = 9*A000292(n-2).
G.f.: y*(x*y - y - 1)/(x*y + y - 1)^3. (End)

Extensions

Edited and new name by Franck Maminirina Ramaharo, Oct 02 2018

A229253 Total number of elements of nonempty subsets of divisors of n.

Original entry on oeis.org

1, 4, 4, 12, 4, 32, 4, 32, 12, 32, 4, 192, 4, 32, 32, 80, 4, 192, 4, 192, 32, 32, 4, 1024, 12, 32, 32, 192, 4, 1024, 4, 192, 32, 32, 32, 2304, 4, 32, 32, 1024, 4, 1024, 4, 192, 192, 32, 4, 5120, 12, 192, 32, 192, 4, 1024, 32, 1024, 32, 32, 4, 24576, 4, 32, 192
Offset: 1

Views

Author

Jaroslav Krizek, Sep 29 2013

Keywords

Comments

Number of nonempty subsets of divisors of n = A100587(n).

Examples

			For n = 4; divisors of 4: {1, 2, 4}; nonempty subsets of divisors of n: {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}; total number  of elements of subsets = 1 + 1 + 1 + 2 + 2 + 2 + 3 = 12.
		

Crossrefs

Programs

Formula

a(n) = A001787(A000005(n)) = A000005(n) * 2^(A000005(n)-1) = A100587(n) + A000337(n-1) = tau(n) * 2^(tau(n)-1).

A237425 Denominators of A164555(n)/A027642(n) + A198631(n)/A006519(n+1).

Original entry on oeis.org

1, 1, 6, 4, 30, 2, 42, 8, 30, 2, 66, 4, 2730, 2, 6, 16, 510, 2, 798, 4, 330, 2, 138, 8, 2730, 2, 6, 4, 870, 2, 14322, 32, 510, 2, 6, 4, 1919190, 2, 6, 8, 13530, 2, 1806, 4, 690, 2, 282, 16, 46410, 2, 66, 4, 1590, 2, 798, 8
Offset: 0

Views

Author

Paul Curtz, Feb 07 2014

Keywords

Comments

An autosequence is a sequence which has its inverse binomial transform equal to the signed sequence. There are two possibilities. For the first kind, the main diagonal is 0's=A000004, the first two following diagonals being the same (generally not A000004). Integers example: A000045(n).
For the second kind, the main diagonal is the double of the following diagonal. Example: the companion to A000045(n) is A000032(n)=2, 1, 3, ... .
A000032(n)/2 is also a possibility. Here a(n) is the denominator of the sum of two autosequences of second kind involving (fractional) Euler and Bernoulli numbers. The corresponding fractional sequence is also an autosequence of the second kind: 2, 1, 1/6, -1/4, -1/30, 1/2, 1/42, -17/8, -1/30, 31/2, 5/66, -691/4, -691/2730,... . It could be divided by 2.

Crossrefs

Programs

  • Mathematica
    a[n_] := BernoulliB[n] + EulerE[n, 1]/2^IntegerExponent[n, 2]; a[0] = 2; a[1] = 1; Table[a[n] // Denominator, {n, 0, 55}] (* Jean-François Alcover, Feb 11 2014 *)

Formula

a(2n) = A002445(n). a(2n+2) = A171977(n+2).

A276670 Numerator of (n-1)*n*(n+1)/4.

Original entry on oeis.org

0, 0, 3, 6, 15, 30, 105, 84, 126, 180, 495, 330, 429, 546, 1365, 840, 1020, 1224, 2907, 1710, 1995, 2310, 5313, 3036, 3450, 3900, 8775, 4914, 5481, 6090, 13485, 7440, 8184, 8976, 19635, 10710, 11655, 12654, 27417, 14820, 15990, 17220, 37023, 19866, 21285
Offset: 0

Views

Author

Paul Curtz, Oct 05 2016

Keywords

Comments

Consider the sequence [2/(n+1), autosequence of the second kind] (see A003506), and its successive differences:
2, 1, 2/3, 1/2, 2/5, 1/3, 2/7, 1/4, 2/9, ... (see A026741)
-1, -1/3, -1/6, -1/10, -1/15, -1/21, -1/28, -1/36, -1/45, ... (see A000217)
2/3, 1/6, 1/15, 1/30, 2/105, 1/84, 1/126, 1/180, 2/495, ...
...
Each fraction in the third row is essentially the reciprocal of (n-1)*n*(n+1)/4 (3/2, 6, 15, 30, 105/2, ... ).
The numbers (= 3*A138190) are divisible by
1) -1, 1, 1, 1, 3, 2, 5, 3, 7, ... hence f(n) = 0, 0, 3, 6, 5, 15, 21, 28, 18, ...
2) 1, 1, 3, 3, 5, 5, 7, 7, 9, ... hence g(n) = 0, 0, 1, 2, 3, 6, 15, 12, 14, ...

Crossrefs

Programs

  • Maple
    seq(numer((n^3-n)/4), n=0..100); # Robert Israel, Oct 05 2016
  • Mathematica
    f[n_] := Numerator[(n - 1) n (n + 1)/4]; Array[f, 40, 0] (* Robert G. Wilson v, Oct 05 2016 *)
  • PARI
    concat(vector(2), Vec(3*x^2*(1 +2*x +5*x^2 +10*x^3 +31*x^4 +20*x^5 +22*x^6 +20*x^7 +31*x^8 +10*x^9 +5*x^10 +2*x^11 +x^12) / ((1 -x)^4*(1 +x)^4*(1 +x^2)^4) + O(x^30))) \\ Colin Barker, Oct 09 2016

Formula

a(n) = 3*A138190(n), for n>=1.
a(n) = 4*a(n-4) - 6*a(n-8) + 4*a(n-12) - a(n-16).
a(n) = A007531(n+1)/2 if n == 2 (mod 4), otherwise a(n) = A007531(n+1)/4. - Robert Israel, Oct 05 2016
G.f.: 3*x^2*(1 +2*x +5*x^2 +10*x^3 +31*x^4 +20*x^5 +22*x^6 +20*x^7 +31*x^8 +10*x^9 +5*x^10 +2*x^11 +x^12) / ((1 -x)^4*(1 +x)^4*(1 +x^2)^4). - Colin Barker, Oct 09 2016
Sum_{n>=2} 1/a(n) = 1 - log(2)/2. - Amiram Eldar, Aug 13 2022

Extensions

More terms from Robert G. Wilson v, Oct 05 2016

A294033 Triangle read by rows, expansion of exp(x*z)*z*(tanh(z) + sech(z)), T(n, k) for n >= 1 and 0 <= k <= n-1.

Original entry on oeis.org

1, 2, 2, -3, 6, 3, -8, -12, 12, 4, 25, -40, -30, 20, 5, 96, 150, -120, -60, 30, 6, -427, 672, 525, -280, -105, 42, 7, -2176, -3416, 2688, 1400, -560, -168, 56, 8, 12465, -19584, -15372, 8064, 3150, -1008, -252, 72, 9, 79360, 124650, -97920, -51240, 20160, 6300, -1680, -360, 90, 10, -555731, 872960, 685575, -359040, -140910, 44352, 11550, -2640, -495, 110, 11
Offset: 1

Views

Author

Peter Luschny, Oct 24 2017

Keywords

Examples

			Triangle starts:
  [1][   1]
  [2][   2,   2]
  [3][  -3,   6,    3]
  [4][  -8, -12,   12,    4]
  [5][  25, -40,  -30,   20,    5]
  [6][  96, 150, -120,  -60,   30,  6]
  [7][-427, 672,  525, -280, -105, 42, 7]
		

Crossrefs

T(n, 0) = signed A065619. Row sums of abs(T(n,k)) = A231179.
A003506 (m=1), this seq. (m=2), A294034 (m=3).

Programs

  • Maple
    gf := exp(x*z)*z*(tanh(z)+sech(z)):
    s := n -> n!*coeff(series(gf,z,n+2),z,n):
    C := n -> PolynomialTools:-CoefficientList(s(n),x):
    ListTools:-FlattenOnce([seq(C(n), n=1..7)]);
    # Alternatively:
    T := (n, k) -> `if`(n = k+1, n,
    (k+1)*binomial(n,k+1)*2^(n-k-1)*(euler(n-k-1, 1/2)+euler(n-k-1, 1))):
    for n from 1 to 7 do seq(T(n,k), k=0..n-1) od;
  • Mathematica
    L[0] := 1; L[n_] := (-1)^Binomial[n, 2] 2 Abs[PolyLog[-n, -I]];
    p[n_] := n Sum[Binomial[n - 1, k - 1] L[k - 1] x^(n - k), {k, 0, n}];
    Table[CoefficientList[p[n], x], {n, 1, 11}] // Flatten

Formula

T(n, k) = (k+1)*binomial(n,k+1)*2^(n-k-1)*(Euler(n-k-1, 1/2) + Euler(n-k-1, 1)) for 0 <= k <= n-2.
T(n, k) is the coefficient of x^k of the polynomial p(n) = n*Sum_{k=1..n} binomial(n-1, k-1)*L(k-1)*x^(n-k) and L(n) = (-1)^binomial(n,2)*A000111(n). In particular n divides T(n, k).

A294034 Triangle read by rows, expansion of exp(x*z)*z*((exp(z) + 1)/((exp(z) + 2*exp(-z/2)*cos(z*sqrt(3)/2))/3) -1), for n >= 1 and 0 <= k <= n-1.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, -4, 12, 12, 4, -15, -20, 30, 20, 5, -54, -90, -60, 60, 30, 6, 133, -378, -315, -140, 105, 42, 7, 792, 1064, -1512, -840, -280, 168, 56, 8, 4293, 7128, 4788, -4536, -1890, -504, 252, 72, 9, -15130, 42930, 35640, 15960, -11340, -3780, -840, 360, 90, 10, -123849, -166430, 236115, 130680, 43890, -24948, -6930, -1320, 495, 110, 11
Offset: 1

Views

Author

Peter Luschny, Oct 24 2017

Keywords

Examples

			Triangle starts:
[1][   1]
[2][   2,    2]
[3][   3,    6,     3]
[4][  -4,   12,    12,    4]
[5][ -15,  -20,    30,   20,    5]
[6][ -54,  -90,   -60,   60,   30,   6]
[7][ 133, -378,  -315, -140,  105,  42,  7]
[8][ 792, 1064, -1512, -840, -280, 168, 56, 8]
		

Crossrefs

Programs

  • Maple
    gf := exp(x*z)*z*((exp(z) + 1)/((exp(z) + 2*exp(-z/2)*cos(z*sqrt(3)/2))/3) - 1):
    s := n -> n!*coeff(series(gf, z, 12), z, n):
    C := n -> PolynomialTools:-CoefficientList(s(n), x):
    ListTools:-FlattenOnce([seq(C(n), n=1..11)]);

A344007 Denominators of triangle formed by beginning with 1 on row 1, then producing row n by replacing the largest value on row n-1, k, by 1/n and k - 1/n, and arranging the entries in order from smallest to largest.

Original entry on oeis.org

1, 2, 2, 6, 3, 2, 6, 4, 4, 3, 15, 6, 5, 4, 4, 12, 15, 6, 6, 5, 4, 12, 28, 15, 7, 6, 6, 5, 40, 12, 28, 8, 15, 7, 6, 6, 18, 40, 12, 28, 9, 8, 15, 7, 6, 18, 15, 40, 12, 10, 28, 9, 8, 15, 7, 77, 18, 15, 40, 12, 11, 10, 28, 9, 8, 15, 20, 77, 18, 15, 40, 12, 12, 11, 10, 28, 9, 8
Offset: 1

Views

Author

Evan Lee, Jun 08 2021

Keywords

Comments

If there is more than one copy of the largest entry in row n-1, only one copy is changed.
For a somewhat similar triangle, see Leibniz's Harmonic Triangle A003506. - N. J. A. Sloane, Jun 09 2021

Examples

			The triangle's first 10 rows:
  1
  1/2,   1/2
  1/6,   1/3,   1/2
  1/6,   1/4,   1/4,   1/3
  2/15,  1/6,   1/5,   1/4,   1/4
  1/12,  2/15,  1/6,   1/6,   1/5,   1/4
  1/12,  3/28,  2/15,  1/7,   1/6,   1/6,   1/5
  3/40,  1/12,  3/28,  1/8,   2/15,  1/7,   1/6,   1/6
  1/18,  3/40,  1/12,  3/28,  1/9,   1/8,   2/15,  1/7,   1/6
  1/18,  1/15,  3/40,  1/12,  1/10,  3/28,  1/9,   1/8,   2/15,  1/7
  ...
The denominators are:
   1
   2,  2,
   6,  3, 2,
   6,  4, 4, 3,
  15,  6, 5, 4, 4,
  12, 15, 6, 6, 5, 4,
  ...
		

Crossrefs

Cf. A003506.
For numerators see A344008.

Programs

  • PARI
    lista(nn) = {my(row, nrow, drow); for (n=1, nn, if (n==1, row = [1], k = vecmax(row); nrow = row; nrow[n-1] = 1/n; nrow = concat(nrow, k - 1/n); row = vecsort(nrow);); drow = apply(denominator, row); for (k=1, #drow, print1(drow[k], ", ")););} \\ Michel Marcus, Jun 09 2021

A344008 Triangle of numerators corresponding to A344007.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 2, 1, 4, 1, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 4, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 5, 1, 4, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Evan Lee, Jun 09 2021

Keywords

Examples

			The triangle underlying A344007 begins:
  1
  1/2,   1/2
  1/6,   1/3,   1/2
  1/6,   1/4,   1/4,   1/3
  2/15,  1/6,   1/5,   1/4,   1/4
  1/12,  2/15,  1/6,   1/6,   1/5,   1/4
  1/12,  3/28,  2/15,  1/7,   1/6,   1/6,   1/5
  3/40,  1/12,  3/28,  1/8,   2/15,  1/7,   1/6,   1/6
  1/18,  3/40,  1/12,  3/28,  1/9,   1/8,   2/15,  1/7,  1/6
  1/18,  1/15,  3/40,  1/12,  1/10,  3/28,  1/9,   1/8,  2/15,  1/7
  ...
The numerators are:
  1
  1, 1
  1, 1, 1
  1, 1, 1, 1
  2, 1, 1, 1, 1
  1, 2, 1, 1, 1, 1
  1, 3, 2, 1, 1, 1, 1
  3, 1, 3, 1, 2, 1, 1, 1
  1, 3, 1, 3, 1, 1, 2, 1, 1
  1, 1, 3, 1, 1, 3, 1, 1, 2, 1
  ...
		

Crossrefs

Programs

  • PARI
    lista(nn) = {my(row, nrow, drow); for (n=1, nn, if (n==1, row = [1], k = vecmax(row); nrow = row; nrow[n-1] = 1/n; nrow = concat(nrow, k - 1/n); row = vecsort(nrow);); drow = apply(numerator, row); for (k=1, #drow, print1(drow[k], ", ")););} \\ Michel Marcus, Jun 09 2021

Extensions

Corrected by Hugo Pfoertner and Michel Marcus, Jun 09 2021

A046200 Odd numbers in the triangle of denominators in Leibniz's Harmonic Triangle.

Original entry on oeis.org

1, 3, 3, 5, 5, 7, 105, 105, 7, 9, 9, 11, 495, 495, 11, 13, 6435, 6435, 13, 15, 1365, 15015, 45045, 45045, 15015, 1365, 15, 17, 17, 19, 2907, 2907, 19, 21, 101745, 101745, 21, 23, 5313, 168245, 1716099, 1716099, 168245, 5313, 23, 25, 18386775, 18386775, 25
Offset: 1

Views

Author

Keywords

Examples

			1/1; --> 1
1/2, 1/2; -->
1/3, 1/6, 1/3; --> 3 3
1/4, 1/12, 1/12, 1/4; --> ...
1/5, 1/20, 1/30, 1/20, 1/5; ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.

Crossrefs

Cf. A003506.

Extensions

More terms from James Sellers, Dec 13 1999

A046203 Even numbers in the triangle of denominators in Leibniz's Harmonic Triangle.

Original entry on oeis.org

2, 2, 6, 4, 12, 12, 4, 20, 30, 20, 6, 30, 60, 60, 30, 6, 42, 140, 42, 8, 56, 168, 280, 280, 168, 56, 8, 72, 252, 504, 630, 504, 252, 72, 10, 90, 360, 840, 1260, 1260, 840, 360, 90, 10, 110, 1320, 2310, 2772, 2310, 1320, 110, 12, 132, 660, 1980, 3960, 5544, 5544
Offset: 1

Views

Author

Keywords

Examples

			1/1; 1/2, 1/2; 1/3, 1/6, 1/3; 1/4, 1/12, 1/12, 1/4; 1/5, 1/20, 1/30, 1/20, 1/5; ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.

Crossrefs

Cf. A003506.

Extensions

More terms from James Sellers, Dec 13 1999
Previous Showing 51-60 of 65 results. Next