A171631
Triangle read by rows: T(n,k) = n*(binomial(n-2, k-1) + n*binomial(n-2, k)), n > 0 and 0 <= k <= n - 1.
Original entry on oeis.org
1, 4, 2, 9, 12, 3, 16, 36, 24, 4, 25, 80, 90, 40, 5, 36, 150, 240, 180, 60, 6, 49, 252, 525, 560, 315, 84, 7, 64, 392, 1008, 1400, 1120, 504, 112, 8, 81, 576, 1764, 3024, 3150, 2016, 756, 144, 9, 100, 810, 2880, 5880, 7560, 6300, 3360, 1080, 180, 10, 121, 1100
Offset: 1
Triangle begins:
n\k| 0 1 2 3 4 6 7 8 9
-------------------------------------------------
1 | 1
2 | 4 2
3 | 9 12 3
4 | 16 36 24 4
5 | 25 80 90 40 5
6 | 36 150 240 180 60 6
7 | 49 252 525 560 315 84 7
8 | 64 392 1008 1400 1120 504 112 8
9 | 81 576 1764 3024 3150 2016 756 144 9
... reformatted. - _Franck Maminirina Ramaharo_, Oct 02 2018
- Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, Dover Publications, 1945, p. 32.
-
Table[CoefficientList[n*(x + n)*(x + 1)^(n - 2), x], {n, 1, 12}]//Flatten
-
T(n, k) := n*(binomial(n - 2, k - 1) + n*binomial(n - 2, k))$
tabl(nn) := for n:1 thru nn do print(makelist(T(n, k), k, 0, n - 1))$ /* Franck Maminirina Ramaharo, Oct 02 2018 */
A229253
Total number of elements of nonempty subsets of divisors of n.
Original entry on oeis.org
1, 4, 4, 12, 4, 32, 4, 32, 12, 32, 4, 192, 4, 32, 32, 80, 4, 192, 4, 192, 32, 32, 4, 1024, 12, 32, 32, 192, 4, 1024, 4, 192, 32, 32, 32, 2304, 4, 32, 32, 1024, 4, 1024, 4, 192, 192, 32, 4, 5120, 12, 192, 32, 192, 4, 1024, 32, 1024, 32, 32, 4, 24576, 4, 32, 192
Offset: 1
For n = 4; divisors of 4: {1, 2, 4}; nonempty subsets of divisors of n: {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}; total number of elements of subsets = 1 + 1 + 1 + 2 + 2 + 2 + 3 = 12.
Original entry on oeis.org
1, 1, 6, 4, 30, 2, 42, 8, 30, 2, 66, 4, 2730, 2, 6, 16, 510, 2, 798, 4, 330, 2, 138, 8, 2730, 2, 6, 4, 870, 2, 14322, 32, 510, 2, 6, 4, 1919190, 2, 6, 8, 13530, 2, 1806, 4, 690, 2, 282, 16, 46410, 2, 66, 4, 1590, 2, 798, 8
Offset: 0
-
a[n_] := BernoulliB[n] + EulerE[n, 1]/2^IntegerExponent[n, 2]; a[0] = 2; a[1] = 1; Table[a[n] // Denominator, {n, 0, 55}] (* Jean-François Alcover, Feb 11 2014 *)
A276670
Numerator of (n-1)*n*(n+1)/4.
Original entry on oeis.org
0, 0, 3, 6, 15, 30, 105, 84, 126, 180, 495, 330, 429, 546, 1365, 840, 1020, 1224, 2907, 1710, 1995, 2310, 5313, 3036, 3450, 3900, 8775, 4914, 5481, 6090, 13485, 7440, 8184, 8976, 19635, 10710, 11655, 12654, 27417, 14820, 15990, 17220, 37023, 19866, 21285
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,4,0,0,0,-6,0,0,0,4,0,0,0,-1).
-
seq(numer((n^3-n)/4), n=0..100); # Robert Israel, Oct 05 2016
-
f[n_] := Numerator[(n - 1) n (n + 1)/4]; Array[f, 40, 0] (* Robert G. Wilson v, Oct 05 2016 *)
-
concat(vector(2), Vec(3*x^2*(1 +2*x +5*x^2 +10*x^3 +31*x^4 +20*x^5 +22*x^6 +20*x^7 +31*x^8 +10*x^9 +5*x^10 +2*x^11 +x^12) / ((1 -x)^4*(1 +x)^4*(1 +x^2)^4) + O(x^30))) \\ Colin Barker, Oct 09 2016
A294033
Triangle read by rows, expansion of exp(x*z)*z*(tanh(z) + sech(z)), T(n, k) for n >= 1 and 0 <= k <= n-1.
Original entry on oeis.org
1, 2, 2, -3, 6, 3, -8, -12, 12, 4, 25, -40, -30, 20, 5, 96, 150, -120, -60, 30, 6, -427, 672, 525, -280, -105, 42, 7, -2176, -3416, 2688, 1400, -560, -168, 56, 8, 12465, -19584, -15372, 8064, 3150, -1008, -252, 72, 9, 79360, 124650, -97920, -51240, 20160, 6300, -1680, -360, 90, 10, -555731, 872960, 685575, -359040, -140910, 44352, 11550, -2640, -495, 110, 11
Offset: 1
Triangle starts:
[1][ 1]
[2][ 2, 2]
[3][ -3, 6, 3]
[4][ -8, -12, 12, 4]
[5][ 25, -40, -30, 20, 5]
[6][ 96, 150, -120, -60, 30, 6]
[7][-427, 672, 525, -280, -105, 42, 7]
-
gf := exp(x*z)*z*(tanh(z)+sech(z)):
s := n -> n!*coeff(series(gf,z,n+2),z,n):
C := n -> PolynomialTools:-CoefficientList(s(n),x):
ListTools:-FlattenOnce([seq(C(n), n=1..7)]);
# Alternatively:
T := (n, k) -> `if`(n = k+1, n,
(k+1)*binomial(n,k+1)*2^(n-k-1)*(euler(n-k-1, 1/2)+euler(n-k-1, 1))):
for n from 1 to 7 do seq(T(n,k), k=0..n-1) od;
-
L[0] := 1; L[n_] := (-1)^Binomial[n, 2] 2 Abs[PolyLog[-n, -I]];
p[n_] := n Sum[Binomial[n - 1, k - 1] L[k - 1] x^(n - k), {k, 0, n}];
Table[CoefficientList[p[n], x], {n, 1, 11}] // Flatten
A294034
Triangle read by rows, expansion of exp(x*z)*z*((exp(z) + 1)/((exp(z) + 2*exp(-z/2)*cos(z*sqrt(3)/2))/3) -1), for n >= 1 and 0 <= k <= n-1.
Original entry on oeis.org
1, 2, 2, 3, 6, 3, -4, 12, 12, 4, -15, -20, 30, 20, 5, -54, -90, -60, 60, 30, 6, 133, -378, -315, -140, 105, 42, 7, 792, 1064, -1512, -840, -280, 168, 56, 8, 4293, 7128, 4788, -4536, -1890, -504, 252, 72, 9, -15130, 42930, 35640, 15960, -11340, -3780, -840, 360, 90, 10, -123849, -166430, 236115, 130680, 43890, -24948, -6930, -1320, 495, 110, 11
Offset: 1
Triangle starts:
[1][ 1]
[2][ 2, 2]
[3][ 3, 6, 3]
[4][ -4, 12, 12, 4]
[5][ -15, -20, 30, 20, 5]
[6][ -54, -90, -60, 60, 30, 6]
[7][ 133, -378, -315, -140, 105, 42, 7]
[8][ 792, 1064, -1512, -840, -280, 168, 56, 8]
-
gf := exp(x*z)*z*((exp(z) + 1)/((exp(z) + 2*exp(-z/2)*cos(z*sqrt(3)/2))/3) - 1):
s := n -> n!*coeff(series(gf, z, 12), z, n):
C := n -> PolynomialTools:-CoefficientList(s(n), x):
ListTools:-FlattenOnce([seq(C(n), n=1..11)]);
A344007
Denominators of triangle formed by beginning with 1 on row 1, then producing row n by replacing the largest value on row n-1, k, by 1/n and k - 1/n, and arranging the entries in order from smallest to largest.
Original entry on oeis.org
1, 2, 2, 6, 3, 2, 6, 4, 4, 3, 15, 6, 5, 4, 4, 12, 15, 6, 6, 5, 4, 12, 28, 15, 7, 6, 6, 5, 40, 12, 28, 8, 15, 7, 6, 6, 18, 40, 12, 28, 9, 8, 15, 7, 6, 18, 15, 40, 12, 10, 28, 9, 8, 15, 7, 77, 18, 15, 40, 12, 11, 10, 28, 9, 8, 15, 20, 77, 18, 15, 40, 12, 12, 11, 10, 28, 9, 8
Offset: 1
The triangle's first 10 rows:
1
1/2, 1/2
1/6, 1/3, 1/2
1/6, 1/4, 1/4, 1/3
2/15, 1/6, 1/5, 1/4, 1/4
1/12, 2/15, 1/6, 1/6, 1/5, 1/4
1/12, 3/28, 2/15, 1/7, 1/6, 1/6, 1/5
3/40, 1/12, 3/28, 1/8, 2/15, 1/7, 1/6, 1/6
1/18, 3/40, 1/12, 3/28, 1/9, 1/8, 2/15, 1/7, 1/6
1/18, 1/15, 3/40, 1/12, 1/10, 3/28, 1/9, 1/8, 2/15, 1/7
...
The denominators are:
1
2, 2,
6, 3, 2,
6, 4, 4, 3,
15, 6, 5, 4, 4,
12, 15, 6, 6, 5, 4,
...
-
lista(nn) = {my(row, nrow, drow); for (n=1, nn, if (n==1, row = [1], k = vecmax(row); nrow = row; nrow[n-1] = 1/n; nrow = concat(nrow, k - 1/n); row = vecsort(nrow);); drow = apply(denominator, row); for (k=1, #drow, print1(drow[k], ", ")););} \\ Michel Marcus, Jun 09 2021
A344008
Triangle of numerators corresponding to A344007.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 2, 1, 4, 1, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 4, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 5, 1, 4, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1
Offset: 1
The triangle underlying A344007 begins:
1
1/2, 1/2
1/6, 1/3, 1/2
1/6, 1/4, 1/4, 1/3
2/15, 1/6, 1/5, 1/4, 1/4
1/12, 2/15, 1/6, 1/6, 1/5, 1/4
1/12, 3/28, 2/15, 1/7, 1/6, 1/6, 1/5
3/40, 1/12, 3/28, 1/8, 2/15, 1/7, 1/6, 1/6
1/18, 3/40, 1/12, 3/28, 1/9, 1/8, 2/15, 1/7, 1/6
1/18, 1/15, 3/40, 1/12, 1/10, 3/28, 1/9, 1/8, 2/15, 1/7
...
The numerators are:
1
1, 1
1, 1, 1
1, 1, 1, 1
2, 1, 1, 1, 1
1, 2, 1, 1, 1, 1
1, 3, 2, 1, 1, 1, 1
3, 1, 3, 1, 2, 1, 1, 1
1, 3, 1, 3, 1, 1, 2, 1, 1
1, 1, 3, 1, 1, 3, 1, 1, 2, 1
...
-
lista(nn) = {my(row, nrow, drow); for (n=1, nn, if (n==1, row = [1], k = vecmax(row); nrow = row; nrow[n-1] = 1/n; nrow = concat(nrow, k - 1/n); row = vecsort(nrow);); drow = apply(numerator, row); for (k=1, #drow, print1(drow[k], ", ")););} \\ Michel Marcus, Jun 09 2021
A046200
Odd numbers in the triangle of denominators in Leibniz's Harmonic Triangle.
Original entry on oeis.org
1, 3, 3, 5, 5, 7, 105, 105, 7, 9, 9, 11, 495, 495, 11, 13, 6435, 6435, 13, 15, 1365, 15015, 45045, 45045, 15015, 1365, 15, 17, 17, 19, 2907, 2907, 19, 21, 101745, 101745, 21, 23, 5313, 168245, 1716099, 1716099, 168245, 5313, 23, 25, 18386775, 18386775, 25
Offset: 1
1/1; --> 1
1/2, 1/2; -->
1/3, 1/6, 1/3; --> 3 3
1/4, 1/12, 1/12, 1/4; --> ...
1/5, 1/20, 1/30, 1/20, 1/5; ...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.
A046203
Even numbers in the triangle of denominators in Leibniz's Harmonic Triangle.
Original entry on oeis.org
2, 2, 6, 4, 12, 12, 4, 20, 30, 20, 6, 30, 60, 60, 30, 6, 42, 140, 42, 8, 56, 168, 280, 280, 168, 56, 8, 72, 252, 504, 630, 504, 252, 72, 10, 90, 360, 840, 1260, 1260, 840, 360, 90, 10, 110, 1320, 2310, 2772, 2310, 1320, 110, 12, 132, 660, 1980, 3960, 5544, 5544
Offset: 1
1/1; 1/2, 1/2; 1/3, 1/6, 1/3; 1/4, 1/12, 1/12, 1/4; 1/5, 1/20, 1/30, 1/20, 1/5; ...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.
Comments