cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A072675 Integers m such that the last digit of Fibonacci(m) is 1.

Original entry on oeis.org

1, 2, 8, 19, 22, 28, 41, 59, 61, 62, 68, 79, 82, 88, 101, 119, 121, 122, 128, 139, 142, 148, 161, 179, 181, 182, 188, 199, 202, 208, 221, 239, 241, 242, 248, 259, 262, 268, 281, 299, 301, 302, 308, 319, 322, 328, 341, 359, 361, 362, 368, 379, 382, 388, 401
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Examples

			Fibonacci(28) = 317811, so 28 is a term.
		

Crossrefs

Programs

Formula

Sequence contains numbers of form (1+60k) (2+60k) (8+60k) (19+60k) (22+60k) (28+60k) (41+60k) (59+60k) k>=0.
G.f.: x*(x^8+18*x^7+13*x^6+6*x^5+3*x^4+11*x^3+6*x^2+x+1) / (x^9-x^8-x+1). - Colin Barker, Jun 16 2013

A072682 Numbers congruent to {3, 36, 54, 57} mod 60.

Original entry on oeis.org

3, 36, 54, 57, 63, 96, 114, 117, 123, 156, 174, 177, 183, 216, 234, 237, 243, 276, 294, 297, 303, 336, 354, 357, 363, 396, 414, 417, 423, 456, 474, 477, 483, 516, 534, 537, 543, 576, 594, 597, 603, 636, 654, 657, 663, 696, 714, 717, 723, 756, 774, 777, 783
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Comments

Numbers n such that the last digit of F(n) is 2 where F(n) is the n-th Fibonacci number.

Crossrefs

Programs

  • Magma
    [n: n in [0..800] | n mod 60 in [3, 36, 54, 57]];  // Bruno Berselli, Jun 14 2016
  • Maple
    A072682:=n->15*n+3*(1+I)*((1-I)*I^(2*n)-(5+2*I)*I^(-n)+(2+5*I)*I^n)/4: seq(A072682(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
  • Mathematica
    Select[Range[800], MemberQ[{3,36,54,57}, Mod[#,60]]&] (* Harvey P. Dale, Apr 07 2013 *)

Formula

Sequence contains numbers of the form: 3+60k, 36+60k, 54+60k, 57+60k, k>=0.
G.f.: 3*x*(1 + 11*x + 6*x^2 + x^3 + x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = 15*n + 3*(1+i)*((1-i)*i^(2*n) - (5+2*i)*i^(-n) + (2+5*i)*i^n)/4 where i=sqrt(-1). (End)

Extensions

Simpler definition from Ralf Stephan, Jun 18 2005

A072702 Last digit of F(n) is 4 where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

9, 12, 18, 51, 69, 72, 78, 111, 129, 132, 138, 171, 189, 192, 198, 231, 249, 252, 258, 291, 309, 312, 318, 351, 369, 372, 378, 411, 429, 432, 438, 471, 489, 492, 498, 531, 549, 552, 558, 591, 609, 612, 618, 651, 669, 672, 678, 711, 729, 732, 738, 771, 789
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Comments

Sequence contains numbers of form (9+60k), (12+60k), (18+60k), (51+60k), with k>=0.

Crossrefs

Programs

Formula

G.f.: x*(9*x^4+33*x^3+6*x^2+3*x+9) / (x^5-x^4-x+1). - Colin Barker, Jun 16 2013
a(n) = (-60 + 6*(-1)^n + (9+21*i)*(-i)^n + (9-i*21)*i^n + 60*n) / 4 where i=sqrt(-1). - Colin Barker, Oct 16 2015

A072703 Indices of Fibonacci numbers whose last digit is 5.

Original entry on oeis.org

5, 10, 20, 25, 35, 40, 50, 55, 65, 70, 80, 85, 95, 100, 110, 115, 125, 130, 140, 145, 155, 160, 170, 175, 185, 190, 200, 205, 215, 220, 230, 235, 245, 250, 260, 265, 275, 280, 290, 295, 305, 310, 320, 325, 335, 340, 350, 355, 365, 370, 380, 385, 395, 400, 410
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Comments

Sequence contains numbers of the forms 5 + 60*k, 10 + 60*k, 20 + 60*k, 25 + 60*k, 35 + 60*k, 40 + 60*k, 50 + 60*k, 55 + 60*k, where k>=0.
Numbers that are congruent to {5, 10} mod 15. - Amiram Eldar, Jan 01 2022, Nov 25 2024

Crossrefs

Programs

Formula

a(n) = 15*(n-1)-a(n-1), with a(1) = 5. - Vincenzo Librandi, Aug 08 2010
From Harvey P. Dale, May 15 2011: (Start)
a(1) = 5, a(2) = 10, a(3) = 20, a(n) = a(n-1)+a(n-2)-a(n-3).
a(n) = -(5/4)*(3+(-1)^n-6*n). (End)
G.f.: 5*x*(x^2+x+1) / ((x-1)^2*(x+1)). - Colin Barker, Jun 16 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(15*sqrt(3)) = A248897 / 10. - Amiram Eldar, Jan 01 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cos(Pi/10)*sec(Pi/6) = sqrt((5+sqrt(5))/6).
Product_{n>=1} (1 + (-1)^n/a(n)) = (2/sqrt(3))*cos(7*Pi/30). (End)
a(n) = 5 * A001651(n). - Alois P. Heinz, Nov 27 2024

Extensions

Edited by M. F. Hasler, Oct 08 2014

A072710 Last digit of F(n) is 8 where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

6, 24, 27, 33, 66, 84, 87, 93, 126, 144, 147, 153, 186, 204, 207, 213, 246, 264, 267, 273, 306, 324, 327, 333, 366, 384, 387, 393, 426, 444, 447, 453, 486, 504, 507, 513, 546, 564, 567, 573, 606, 624, 627, 633, 666, 684, 687, 693, 726, 744, 747, 753, 786
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Comments

Sequence contains numbers of form (6+60k), (24+60k), (27+60k), (33+60k), with k>=0.

Crossrefs

Programs

  • PARI
    a(n) = (-60 - 6*(-1)^n - (21-9*I)*(-I)^n - (21+9*I)*I^n + 60*n) / 4 \\ Colin Barker, Oct 16 2015
    
  • PARI
    Vec(x*(27*x^4+6*x^3+3*x^2+18*x+6)/(x^5-x^4-x+1) + O(x^100)) \\ Colin Barker, Oct 16 2015

Formula

G.f.: x*(27*x^4+6*x^3+3*x^2+18*x+6) / (x^5-x^4-x+1). - Colin Barker, Jun 16 2013
a(n) = (-60 - 6*(-1)^n - (21-9*i)*(-i)^n - (21+9*i)*i^n + 60*n) / 4 where i=sqrt(-1). - Colin Barker, Oct 16 2015

A074867 a(n) = M(a(n-1)) + M(a(n-2)) where a(1)=a(2)=1 and M(k) is the product of the digits of k in base 10.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 11, 4, 5, 9, 14, 13, 7, 10, 7, 7, 14, 11, 5, 6, 11, 7, 8, 15, 13, 8, 11, 9, 10, 9, 9, 18, 17, 15, 12, 7, 9, 16, 15, 11, 6, 7, 13, 10, 3, 3, 6, 9, 15, 14, 9, 13, 12, 5, 7, 12, 9, 11, 10, 1, 1, 2, 3, 5, 8, 13, 11, 4, 5, 9, 14, 13, 7, 10, 7, 7, 14, 11, 5, 6, 11, 7, 8, 15, 13
Offset: 1

Views

Author

Felice Russo, Sep 11 2002

Keywords

Comments

Periodic with least period 60. - Christopher N. Swanson (cswanson(AT)ashland.edu), Jul 22 2003
From Hieronymus Fischer, Jul 01 2007: (Start)
The digital product analog (in base 10) of the Fibonacci recurrence.
a(n) and Fib(n)=A000045(n) are congruent modulo 10 which implies that (a(n) mod 10) is equal to (Fib(n) mod 10) = A003893(n). Thus (a(n) mod 10) is periodic with the Pisano period A001175(10)=60.
a(n)==A131297(n) modulo 10 (A131297(n)=digital sum analog base 11 of the Fibonacci recurrence).
For general bases p>1, we have the inequality 1<=a(n)<=2p-2 (for n>0). Actually, a(n)<=18.
(End)

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,Times@@IntegerDigits[a]+Times@@IntegerDigits[b]}; Transpose[ NestList[nxt,{1,1},90]][[1]] (* Harvey P. Dale, Feb 01 2015 *)

Formula

From Hieronymus Fischer, Jul 01 2007: (Start)
a(n) = a(n-1)+a(n-2)-10*(floor(a(n-1)/10)+floor(a(n-2)/10)). This is valid, since a(n)<100.
a(n) = ds_10(a(n-1))+ds_10(a(n-2))-(floor(a(n-1)/10)+floor(a(n-2)/10)) where ds_10(x) is the digital sum of x in base 10.
a(n) = (a(n-1)mod 10)+(a(n-2)mod 10) = A010879(a(n-1))+A010879(a(n-2)).
a(n) = A131297(n) if A131297(n)<=10.
a(n) = Fib(n)-10*sum{1A000045(n).
a(n) = A000045(n)-10*sum{1A000045(n-k+1)*A059995(a(k))}. (End)

Extensions

More terms from Christopher N. Swanson (cswanson(AT)ashland.edu), Jul 22 2003
Definition adapted to offset by Georg Fischer, Jun 18 2021

A105472 Next-to-last digit of n-th Fibonacci number in decimal representation, a(n) = 0 for n <= 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 6, 4, 1, 5, 6, 2, 9, 1, 1, 2, 4, 6, 0, 7, 8, 6, 5, 1, 6, 8, 5, 4, 9, 3, 3, 7, 0, 7, 7, 4, 2, 7, 9, 7, 7, 4, 1, 6, 7, 4, 2, 6, 8, 4, 2, 6, 8, 5, 4, 9, 3, 2, 6, 9, 5, 5, 0, 5, 6, 2, 8, 0, 9, 9, 8, 8, 7, 5, 3, 8, 2, 0, 2, 3, 6, 0, 7, 7, 4, 2, 7, 0, 7, 7, 5
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 09 2005

Keywords

Comments

a(n) = floor(A105471(n)/10) = floor(A000045(n)/10) mod 10;
A105471(n) = a(n)*10 + A003893(n);
the sequence is periodic with period 300; all blocks of 300 successive terms contain 160 even and 140 odd numbers.

Crossrefs

Programs

  • Mathematica
    Array[Mod[Floor[Fibonacci[#]/10], 10] &, 105, 0] (* Michael De Vlieger, Jan 04 2018 *)
    Join[{0,0,0,0,0,0,0},Table[IntegerDigits[Fibonacci[n]][[-2]],{n,7,120}]] (* Harvey P. Dale, Aug 22 2020 *)
  • PARI
    a(n) = (fibonacci(n) % 100)\10; \\ Michel Marcus, Jan 05 2018

A072708 Last digit of F(n) is 6 where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

21, 39, 42, 48, 81, 99, 102, 108, 141, 159, 162, 168, 201, 219, 222, 228, 261, 279, 282, 288, 321, 339, 342, 348, 381, 399, 402, 408, 441, 459, 462, 468, 501, 519, 522, 528, 561, 579, 582, 588, 621, 639, 642, 648, 681, 699, 702, 708, 741, 759, 762, 768, 801
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Comments

Sequence contains numbers of form (21+60k), (39+60k), (42+60k), (48+60k), with k>=0.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{21,39,42,48,81},60] (* Harvey P. Dale, Aug 28 2017 *)
  • PARI
    a(n) = (-3/4+(3*I)/4)*((1+I)*(-1)^n + (5+2*I)*(-I)^n + (2+5*I)*I^n - (10+10*I)*n) \\ Colin Barker, Oct 16 2015
    
  • PARI
    Vec(x*(12*x^4+6*x^3+3*x^2+18*x+21)/(x^5-x^4-x+1) + O(x^100)) \\ Colin Barker, Oct 16 2015

Formula

G.f.: x*(12*x^4+6*x^3+3*x^2+18*x+21) / (x^5-x^4-x+1). - Colin Barker, Jun 16 2013
a(n) = (-3/4+(3*i)/4)*((1+i)*(-1)^n + (5+2*i)*(-i)^n + (2+5*i)*i^n - (10+10*i)*n) where i=sqrt(-1). - Colin Barker, Oct 16 2015

A141053 Most-significant decimal digit of Fibonacci(5n+3).

Original entry on oeis.org

2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2
Offset: 0

Views

Author

Paul Curtz, Aug 01 2008

Keywords

Comments

Leading digit of A134490(n).
From Johannes W. Meijer, Jul 06 2011: (Start)
The leading digit d, 1 <= d <= 9, of A141053 follows Benford’s Law. This law states that the probability for the leading digit is p(d) = log_10(1+1/d), see the examples.
We observe that the last digit of A134490(n), i.e. F(5*n+3) mod 10, leads to the Lucas sequence A000032(n) (mod 10), i.e. a repetitive sequence of 12 digits [2, 1, 3, 4, 7, 1, 8, 9, 7, 6, 3, 9] with p(0) = p(5) = 0, p(1) = p(3) = p(7) = p(9) = 1/6 and p(2) = p(4) = p(6) = p(8) = 1/12. This does not obey Benford’s Law, which would predict that the last digit would satisfy p(d) = 1/10, see the links. (End)

Examples

			From _Johannes W. Meijer_, Jul 06 2011: (Start)
d     p(N=2000) p(N=4000) p(N=6000) p(Benford)
1      0.29900   0.29950   0.30033   0.30103
2      0.17700   0.17675   0.17650   0.17609
3      0.12550   0.12525   0.12517   0.12494
4      0.09650   0.09675   0.09700   0.09691
5      0.07950   0.07950   0.07933   0.07918
6      0.06700   0.06675   0.06700   0.06695
7      0.05800   0.05825   0.05800   0.05799
8      0.05150   0.05125   0.05100   0.05115
9      0.04600   0.04600   0.04567   0.04576
Total  1.00000   1.00000   1.00000   1.00000 (End)
		

Crossrefs

Cf. A000045 (F(n)), A008963 (Initial digit F(n)), A105511-A105519, A003893 (F(n) mod 10), A130893, A186190 (First digit tribonacci), A008952 (Leading digit 2^n), A008905 (Leading digit n!), A045510, A112420 (Leading digit Collatz 3*n+1 starting with 1117065), A007524 (log_10(2)), A104140 (1-log_10(9)). - Johannes W. Meijer, Jul 06 2011

Programs

  • Maple
    A134490 := proc(n) combinat[fibonacci](5*n+3) ; end proc:
    A141053 := proc(n) convert(A134490(n),base,10) ; op(-1,%) ; end proc:
    seq(A141053(n),n=0..70) ; # R. J. Mathar, Jul 04 2011
  • Mathematica
    Table[IntegerDigits[Fibonacci[5n+3]][[1]],{n,0,70}] (* Harvey P. Dale, Jun 22 2025 *)

Formula

a(n) = floor(F(5*n+3)/10^(floor(log(F(5*n+3))/log(10)))). - Johannes W. Meijer, Jul 06 2011
For n>0, a(n) = floor(10^{alpha*n+beta}), where alpha=5*log_10(phi)-1, beta=log_10(1+2/sqrt(5)), {x}=x-floor(x) denotes the fractional part of x, log_10(phi) = A097348, and phi = (1+sqrt(5))/2 = A001622. - Hans J. H. Tuenter, Aug 27 2025

Extensions

Edited by Johannes W. Meijer, Jul 06 2011

A072683 Numbers k such that the last digit of F(k) is 3 where F(k) is the k-th Fibonacci number.

Original entry on oeis.org

4, 7, 13, 26, 44, 46, 47, 53, 64, 67, 73, 86, 104, 106, 107, 113, 124, 127, 133, 146, 164, 166, 167, 173, 184, 187, 193, 206, 224, 226, 227, 233, 244, 247, 253, 266, 284, 286, 287, 293, 304, 307, 313, 326, 344, 346, 347, 353, 364, 367, 373, 386, 404, 406, 407
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Comments

Numbers that are congruent to {4, 7, 13, 26, 44, 46, 47, 53} mod 60. - Amiram Eldar, Jan 01 2022

Crossrefs

Programs

  • Mathematica
    Select[Range[500],Mod[Fibonacci[#],10]==3&] (* Harvey P. Dale, Jan 24 2012 *)
    LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{4,7,13,26,44,46,47,53,64},60] (* Harvey P. Dale, Apr 10 2022 *)

Formula

G.f.: x*(7*x^8+6*x^7+x^6+2*x^5+18*x^4+13*x^3+6*x^2+3*x+4) / ((1-x)^2*(1+x)*(1+x^2)*(1+x^4)). - Colin Barker, Jun 16 2013
a(n) ~ 15*n/2. - Stefano Spezia, Jul 09 2023
Previous Showing 11-20 of 32 results. Next