A072675 Integers m such that the last digit of Fibonacci(m) is 1.
1, 2, 8, 19, 22, 28, 41, 59, 61, 62, 68, 79, 82, 88, 101, 119, 121, 122, 128, 139, 142, 148, 161, 179, 181, 182, 188, 199, 202, 208, 221, 239, 241, 242, 248, 259, 262, 268, 281, 299, 301, 302, 308, 319, 322, 328, 341, 359, 361, 362, 368, 379, 382, 388, 401
Offset: 1
Examples
Fibonacci(28) = 317811, so 28 is a term.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1).
Programs
-
Mathematica
Position[Fibonacci[Range[500]],?(Mod[#,10]==1&)]//Flatten (* or *) LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{1,2,8,19,22,28,41,59,61},70] (* _Harvey P. Dale, Sep 17 2018 *)
Formula
Sequence contains numbers of form (1+60k) (2+60k) (8+60k) (19+60k) (22+60k) (28+60k) (41+60k) (59+60k) k>=0.
G.f.: x*(x^8+18*x^7+13*x^6+6*x^5+3*x^4+11*x^3+6*x^2+x+1) / (x^9-x^8-x+1). - Colin Barker, Jun 16 2013
Comments