cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 59 results. Next

A091255 Square array computed from gcd(P(x),P(y)) where P(x) and P(y) are polynomials with coefficients in {0,1} given by the binary expansions of x and y, and the polynomial calculation is done over GF(2), with the result converted back to a binary number, and then expressed in decimal. Array is symmetric, and is read by falling antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 2, 5, 2, 1, 2, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 3, 2, 7, 2, 3, 2, 1, 2, 1, 1, 1, 3, 1, 5, 3, 1, 1, 3, 5, 1, 3, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

Array is read by antidiagonals, with (x,y) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...
Analogous to A003989.
"Coded in binary" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where a(k)=0 or 1).

Examples

			The top left 17 X 17 corner of the array:
      1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
    +---------------------------------------------------------------
   1: 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1, ...
   2: 1, 2, 1, 2, 1, 2, 1, 2, 1,  2,  1,  2,  1,  2,  1,  2,  1, ...
   3: 1, 1, 3, 1, 3, 3, 1, 1, 3,  3,  1,  3,  1,  1,  3,  1,  3, ...
   4: 1, 2, 1, 4, 1, 2, 1, 4, 1,  2,  1,  4,  1,  2,  1,  4,  1, ...
   5: 1, 1, 3, 1, 5, 3, 1, 1, 3,  5,  1,  3,  1,  1,  5,  1,  5, ...
   6: 1, 2, 3, 2, 3, 6, 1, 2, 3,  6,  1,  6,  1,  2,  3,  2,  3, ...
   7: 1, 1, 1, 1, 1, 1, 7, 1, 7,  1,  1,  1,  1,  7,  1,  1,  1, ...
   8: 1, 2, 1, 4, 1, 2, 1, 8, 1,  2,  1,  4,  1,  2,  1,  8,  1, ...
   9: 1, 1, 3, 1, 3, 3, 7, 1, 9,  3,  1,  3,  1,  7,  3,  1,  3, ...
  10: 1, 2, 3, 2, 5, 6, 1, 2, 3, 10,  1,  6,  1,  2,  5,  2,  5, ...
  11: 1, 1, 1, 1, 1, 1, 1, 1, 1,  1, 11,  1,  1,  1,  1,  1,  1, ...
  12: 1, 2, 3, 4, 3, 6, 1, 4, 3,  6,  1, 12,  1,  2,  3,  4,  3, ...
  13: 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1,  1, 13,  1,  1,  1,  1, ...
  14: 1, 2, 1, 2, 1, 2, 7, 2, 7,  2,  1,  2,  1, 14,  1,  2,  1, ...
  15: 1, 1, 3, 1, 5, 3, 1, 1, 3,  5,  1,  3,  1,  1, 15,  1, 15, ...
  16: 1, 2, 1, 4, 1, 2, 1, 8, 1,  2,  1,  4,  1,  2,  1, 16,  1, ...
  17: 1, 1, 3, 1, 5, 3, 1, 1, 3,  5,  1,  3,  1,  1,  15, 1, 17, ...
  ...
3, which is "11" in binary, encodes polynomial X + 1, while 7 ("111" in binary) encodes polynomial X^2 + X + 1, whereas 9 ("1001" in binary), encodes polynomial X^3 + 1. Now (X + 1)(X^2 + X + 1) = (X^3 + 1) when the polynomials are multiplied over GF(2), or equally, when multiplication of integers 3 and 7 is done as a carryless base-2 product (A048720(3,7) = 9). Thus it follows that A(3,9) = A(9,3) = 3 and A(7,9) = A(9,7) = 7.
Furthermore, 5 ("101" in binary) encodes polynomial X^2 + 1 which is equal to (X + 1)(X + 1) in GF(2)[X], thus A(5,9) = A(9,5) = 3, as the irreducible polynomial (X + 1) is the only common factor for polynomials X^2 + 1 and X^3 + 1.
		

Crossrefs

Cf. also A327856 (the upper left triangular section of this array), A327857.

Programs

  • PARI
    A091255sq(a,b) = fromdigits(Vec(lift(gcd(Pol(binary(a))*Mod(1, 2),Pol(binary(b))*Mod(1, 2)))),2); \\ Antti Karttunen, Aug 12 2019

Formula

A(x,y) = A(y,x) = A(x, A003987(x,y)) = A(A003987(x,y), y), where A003987 gives the bitwise-XOR of its two arguments. - Antti Karttunen, Sep 28 2019

Extensions

Data section extended up to a(105), examples added by Antti Karttunen, Sep 28 2019

A003990 Table of lcm(x,y), read along antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 4, 3, 4, 5, 6, 10, 12, 12, 10, 6, 7, 6, 15, 4, 15, 6, 7, 8, 14, 6, 20, 20, 6, 14, 8, 9, 8, 21, 12, 5, 12, 21, 8, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 10, 9, 8, 35, 6, 35, 8, 9, 10, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 12, 33, 20, 45, 24
Offset: 1

Views

Author

Keywords

Comments

A(x,x) = x on the diagonal. - Reinhard Zumkeller, Aug 05 2012

Examples

			The symmetric array is lcm(x,y) = lcm(y,x):
   1  2  3  4  5  6  7  8  9 10 ...
   2  2  6  4 10  6 14  8 18 10 ...
   3  6  3 12 15  6 21 24  9 30 ...
   4  4 12  4 20 12 28  8 36 20 ...
   5 10 15 20  5 30 35 40 45 10 ...
   6  6  6 12 30  6 42 24 18 30 ...
   7 14 21 28 35 42  7 56 63 70 ...
   8  8 24  8 40 24 56  8 72 40 ...
   9 18  9 36 45 18 63 72  9 90 ...
  10 10 30 20 10 30 70 40 90 10 ...
		

Crossrefs

A(x, y) = A075174(A003986(A075173(x), A075173(y))) = A075176(A003986(A075175(x), A075175(y))).
Antidiagonal sums are in A006580.
Cf. A002260.

Programs

  • Haskell
    a003990 x y = a003990_adiag x !! (y-1)
    a003990_adiag n = a003990_tabl !! (n-1)
    a003990_tabl = zipWith (zipWith lcm) a002260_tabl $ map reverse a002260_tabl
    -- Reinhard Zumkeller, Aug 05 2012
    
  • Mathematica
    Table[ LCM[x-y, y], {x, 1, 14}, {y, 1, x-1}] // Flatten (* Jean-François Alcover, Aug 20 2013 *)
  • PARI
    A(x,y)=lcm(x,y) \\ Charles R Greathouse IV, Feb 06 2017

A109004 Table of gcd(n, m) read by antidiagonals, n >= 0, m >= 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 1, 1, 3, 4, 1, 2, 1, 4, 5, 1, 1, 1, 1, 5, 6, 1, 2, 3, 2, 1, 6, 7, 1, 1, 1, 1, 1, 1, 7, 8, 1, 2, 1, 4, 1, 2, 1, 8, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 12, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13
Offset: 0

Views

Author

Keywords

Examples

			Triangle starts:
  [ 0] [0]
  [ 1] [1, 1]
  [ 2] [2, 1, 2]
  [ 3] [3, 1, 1, 3]
  [ 4] [4, 1, 2, 1, 4]
  [ 5] [5, 1, 1, 1, 1, 5]
  [ 6] [6, 1, 2, 3, 2, 1, 6]
  [ 7] [7, 1, 1, 1, 1, 1, 1, 7]
  [ 8] [8, 1, 2, 1, 4, 1, 2, 1, 8]
  [ 9] [9, 1, 1, 3, 1, 1, 3, 1, 1, 9]
  [10] [10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10]
  [11] [11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11]
  [12] [12, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12]
		

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 335.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., 1994, ch. 4.
  • D. E. Knuth, The Art of Computer Programming, Addison-Wesley, section 4. 5. 2

Crossrefs

Rows, columns and diagonals: A089128, A109007, A109008, A109009, A109010, A109011, A109012, A109013, A109014, A109015.
A003989 is (1, 1) based.

Programs

  • Mathematica
    a[n_, m_] := GCD[n, m]; Table[a[n - m, m], {n,0,10}, {m,0,n}]//Flatten (* G. C. Greubel, Jan 04 2018 *)
  • PARI
    {a(n, m) = gcd( n, m)}
    
  • PARI
    {a(n, m) = local(x); n = abs(n); m = abs(m); if( !m, n, -2 * sum( k=1, m, x = k * n / m; x - floor( x) - 1/2))} /* Michael Somos, May 22 2011 */
    
  • Python
    # Since 3.5 part of the math module. For a version using the binary GCD algorithm see the links.
    for n in range(13): print([math.gcd(n, k) for k in range(n + 1)])  # Peter Luschny, May 14 2025

Formula

a(n, m) = a(m, n) = a(m, n-m) = a(m, n mod m), n >= m.
a(n, m) = n + m - n*m + 2*Sum_{k=1..m-1} floor(k*n/m).
Multiplicative in both parameters with a(p^e, m) = gcd(p^e, m). - David W. Wilson, Jun 12 2005

A206284 Numbers that match irreducible polynomials over the nonnegative integers.

Original entry on oeis.org

3, 6, 9, 10, 12, 18, 20, 22, 24, 27, 28, 30, 36, 40, 42, 44, 46, 48, 50, 52, 54, 56, 60, 66, 68, 70, 72, 76, 80, 81, 88, 92, 96, 98, 100, 102, 104, 108, 112, 114, 116, 118, 120, 124, 126, 130, 132, 136, 140, 144, 148, 150, 152, 154, 160, 162, 164, 168, 170
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2012

Keywords

Comments

Starting with 1, which encodes 0-polynomial, each integer m encodes (or "matches") a polynomial p(m,x) with nonnegative integer coefficients determined by the prime factorization of m. Write m = prime(1)^e(1) * prime(2)^e(2) * ... * prime(k)^e(k); then p(m,x) = e(1) + e(2)x + e(3)x^2 + ... + e(k)x^k.
Identities:
p(m*n,x) = p(m,x) + p(n,x),
p(m*n,x) = p(gcd(m,n),x) + p(lcm(m,n),x),
p(m+n,x) = p(gcd(m,n),x) + p((m+n)/gcd(m,n),x), so that if A003057 is read as a square matrix, then
p(A003057,x) = p(A003989,x) + p(A106448,x).
Apart from powers of 3, all terms are even. - Charles R Greathouse IV, Feb 11 2012
Contains 2*p^m and p*2^m if p is an odd prime and m is in A052485. - Robert Israel, Oct 09 2016

Examples

			Polynomials having nonnegative integer coefficients are matched to the positive integers as follows:
   m    p(m,x)    irreducible
  ---------------------------
   1    0         no
   2    1         no
   3    x         yes
   4    2         no
   5    x^2       no
   6    1+x       yes
   7    x^3       no
   8    3         no
   9    2x        yes
  10    1+x^2     yes
		

Crossrefs

Cf. A052485, A206285 (complement), A206296.
Positions of ones in A277322.
Terms of A277318 form a proper subset of this sequence. Cf. also A277316.
Other sequences about factorization in the same polynomial ring: A206442, A284010.
Polynomial multiplication using the same encoding: A297845.

Programs

  • Maple
    P:= n -> add(f[2]*x^(numtheory:-pi(f[1])-1), f =  ifactors(n)[2]):
    select(irreduc @ P, [$1..200]); # Robert Israel, Oct 09 2016
  • Mathematica
    b[n_] := Table[x^k, {k, 0, n}];
    f[n_] := f[n] = FactorInteger[n]; z = 400;
    t[n_, m_, k_] := If[PrimeQ[f[n][[m, 1]]] && f[n][[m, 1]]
    == Prime[k], f[n][[m, 2]], 0];
    u = Table[Apply[Plus,
        Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], {m, 1,
          Length[f[n]]}]], {n, 1, z}];
    p[n_, x_] := u[[n]].b[-1 + Length[u[[n]]]]
    Table[p[n, x], {n, 1, z/4}]
    v = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]],
    AppendTo[v, n]], {n, z/2}]; v  (* A206284 *)
    Complement[Range[200], v]      (* A206285 *)
  • PARI
    is(n)=my(f=factor(n));polisirreducible(sum(i=1, #f[,1], f[i,2]*'x^primepi(f[i,1]-1))) \\ Charles R Greathouse IV, Feb 12 2012

Extensions

Introductory comments edited by Antti Karttunen, Oct 09 2016 and Peter Munn, Aug 13 2022

A054522 Triangle T(n,k): T(n,k) = phi(k) if k divides n, T(n,k)=0 otherwise (n >= 1, 1<=k<=n). T(n,k) = number of elements of order k in cyclic group of order n.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 0, 4, 1, 1, 2, 0, 0, 2, 1, 0, 0, 0, 0, 0, 6, 1, 1, 0, 2, 0, 0, 0, 4, 1, 0, 2, 0, 0, 0, 0, 0, 6, 1, 1, 0, 0, 4, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 1, 2, 2, 0, 2, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1, 1, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

Comments

T(n,1) = 1; T(n,n) = A000010(n).
This triangle is the transpose of the upper triangular array U in the LU decomposition of the square array A003989. - Peter Bala, Oct 15 2023

Examples

			1;
1, 1;
1, 0, 2;
1, 1, 0, 2;
1, 0, 0, 0, 4;
1, 1, 2, 0, 0, 2;
1, 0, 0, 0, 0, 0, 6;
1, 1, 0, 2, 0, 0, 0, 4;
1, 0, 2, 0, 0, 0, 0, 0, 6;
		

Crossrefs

Programs

  • Haskell
    a054522 n k = a054522_tabl !! (n-1) !! (k-1)
    a054522_tabl = map a054522_row [1..]
    a054522_row n = map (\k -> if n `mod` k == 0 then a000010 k else 0) [1..n]
    -- Reinhard Zumkeller, Oct 18 2011
  • Maple
    A054522 := proc(n,k)
        if modp(n,k) = 0 then
            numtheory[phi](k) ;
        else
            0;
        end if;
    end proc:
    seq(seq(A054522(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Aug 06 2016
  • Mathematica
    t[n_, k_] /; Divisible[n, k] := EulerPhi[k]; t[, ] = 0; Flatten[Table[t[n, k], {n, 1, 14}, {k, 1, n}]] (* Jean-François Alcover, Nov 25 2011 *)
    Flatten[Table[If[Divisible[n,k],EulerPhi[k],0],{n,15},{k,n}]] (* Harvey P. Dale, Feb 27 2012 *)
  • PARI
    T(n,k)=if(k<1 || k>n,0,if(n%k,0,eulerphi(k)))
    

Formula

Sum (T(n,k): k = 1 .. n) = n. - Reinhard Zumkeller, Oct 18 2011
T(n,k) = Sum_{d|k} mu(k/d)*gcd(n,d). - Ridouane Oudra, Apr 05 2025

A049581 Table T(n,k) = |n-k| read by antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

0, 1, 1, 2, 0, 2, 3, 1, 1, 3, 4, 2, 0, 2, 4, 5, 3, 1, 1, 3, 5, 6, 4, 2, 0, 2, 4, 6, 7, 5, 3, 1, 1, 3, 5, 7, 8, 6, 4, 2, 0, 2, 4, 6, 8, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 10, 8, 6, 4, 2, 0, 2, 4, 6, 8, 10, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 12, 10, 8, 6, 4, 2, 0, 2, 4, 6, 8, 10, 12
Offset: 0

Views

Author

Keywords

Comments

Commutative non-associative operator with identity 0. T(nx,kx) = x T(n,k). A multiplicative analog is A089913. - Marc LeBrun, Nov 14 2003
For the characteristic polynomial of the n X n matrix M_n with entries M_n(i, j) = |i-j| see A203993. - Wolfdieter Lang, Feb 04 2018
For the determinant of the n X n matrix M_n with entries M_n(i, j) = |i-j| see A085750. - Bernard Schott, May 13 2020
a(n) = 0 iff n = 4 times triangular number (A046092). - Bernard Schott, May 13 2020

Examples

			Displayed as a triangle t(n, k):
  n\k   0 1 2 3 4 5 6 7 8 9 10 ...
  0:    0
  1:    1 1
  2:    2 0 2
  3:    3 1 1 3
  4:    4 2 0 2 4
  5:    5 3 1 1 3 5
  6:    6 4 2 0 2 4 6
  7:    7 5 3 1 1 3 5 7
  8:    8 6 4 2 0 2 4 6 8
  9:    9 7 5 3 1 1 3 5 7 9
  10:  10 8 6 4 2 0 2 4 6 8 10
... reformatted by _Wolfdieter Lang_, Feb 04 2018
Displayed as a table:
  0 1 2 3 4 5 6 ...
  1 0 1 2 3 4 5 ...
  2 1 0 1 2 3 4 ...
  3 2 1 0 1 2 3 ...
  4 3 2 1 0 1 2 ...
  5 4 3 2 1 0 1 ...
  6 5 4 3 2 1 0 ...
  ...
		

Crossrefs

Cf. A089913. Apart from signs, same as A114327. A203993.

Programs

  • GAP
    a := Flat(List([0..12],n->List([0..n],k->Maximum(k,n-k)-Minimum(k,n-k)))); # Muniru A Asiru, Jan 26 2018
    
  • Magma
    [[Abs(n-2*k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jun 07 2019
    
  • Maple
    seq(seq(abs(n-2*k),k=0..n),n=0..12); # Robert Israel, Sep 30 2015
  • Mathematica
    Table[Abs[(n-k) -k], {n,0,12}, {k,0,n}]//Flatten (* Michael De Vlieger, Sep 29 2015 *)
    Table[Join[Range[n,0,-2],Range[If[EvenQ[n],2,1],n,2]],{n,0,12}]//Flatten (* Harvey P. Dale, Sep 18 2023 *)
  • PARI
    a(n) = abs(2*(n+1)-binomial((sqrtint(8*(n+1))+1)\2, 2)-(binomial(1+floor(1/2 + sqrt(2*(n+1))), 2))-1);
    vector(100, n , a(n-1)) \\ Altug Alkan, Sep 29 2015
    
  • PARI
    {t(n,k) = abs(n-2*k)}; \\ G. C. Greubel, Jun 07 2019
    
  • Python
    from math import isqrt
    def A049581(n): return abs((k:=n+1<<1)-((m:=isqrt(k))+(k>m*(m+1)))**2-1) # Chai Wah Wu, Nov 09 2024
  • Sage
    [[abs(n-2*k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 07 2019
    

Formula

G.f.: (x + y - 4*x*y + x^2*y + x*y^2)/((1-x)^2*(1-y)^2*(1-x*y)) = (x/(1-x)^2 + y/(1-y)^2)/(1-x*y). T(n,0) = T(0,n) = n; T(n+1,k+1) = T(n,k). - Franklin T. Adams-Watters, Feb 06 2006
a(n) = |A002260(n+1)-A004736(n+1)| or a(n) = |((n+1)-t*(t+1)/2) - ((t*t+3*t+4)/2-(n+1))| where t = floor((-1+sqrt(8*(n+1)-7))/2). - Boris Putievskiy, Dec 24 2012; corrected by Altug Alkan, Sep 30 2015
From Robert Israel, Sep 30 2015: (Start)
If b(n) = a(n+1) - 2*a(n) + a(n-1), then for n >= 3 we have
b(n) = -1 if n = (j^2+5j+4)/2 for some integer j >= 1
b(n) = -3 if n = (j^2+5j+6)/2 for some integer j >= 0
b(n) = 4 if n = 2j^2 + 6j + 4 for some integer j >= 0
b(n) = 2 if n = 2j^2 + 8j + 7 or 2j^2 + 8j + 8 for some integer j >= 0
b(n) = 0 otherwise. (End)
Triangle t(n,k) = max(k, n-k) - min(k, n-k). - Peter Luschny, Jan 26 2018
Triangle t(n, k) = |n - 2*k| for n >= 0, k = 0..n. See the Maple and Mathematica programs. Hence t(n, k)= t(n, n-k). - Wolfdieter Lang, Feb 04 2018
a(n) = |t^2 - 2*n - 1|, where t = floor(sqrt(2*n+1) + 1/2). - Ridouane Oudra, Jun 07 2019; Dec 11 2020
As a rectangle, T(n,k) = |n-k| = max(n,k) - min(n,k). - Clark Kimberling, May 11 2020

A055151 Triangular array of Motzkin polynomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 6, 2, 1, 10, 10, 1, 15, 30, 5, 1, 21, 70, 35, 1, 28, 140, 140, 14, 1, 36, 252, 420, 126, 1, 45, 420, 1050, 630, 42, 1, 55, 660, 2310, 2310, 462, 1, 66, 990, 4620, 6930, 2772, 132, 1, 78, 1430, 8580, 18018, 12012, 1716, 1, 91, 2002, 15015, 42042
Offset: 0

Views

Author

Michael Somos, Jun 14 2000

Keywords

Comments

T(n,k) = number of Motzkin paths of length n with k up steps. T(n,k)=number of 0-1-2 trees with n edges and k+1 leaves, n>0. (A 0-1-2 tree is an ordered tree in which every vertex has at most two children.) E.g., T(4,1)=6 because we have UDHH, UHDH, UHHD, HHUD, HUHD, HUDH, where U=(1,1), D(1,-1), H(1,0). - Emeric Deutsch, Nov 30 2003
Coefficients in series reversion of x/(1+H*x+U*D*x^2) corresponding to Motzkin paths with H colors for H(1,0), U colors for U(1,1) and D colors for D(1,-1). - Paul Barry, May 16 2005
Eigenvector equals A119020, so that A119020(n) = Sum_{k=0..[n/2]} T(n,k)*A119020(k). - Paul D. Hanna, May 09 2006
Row reverse of A107131. - Peter Bala, May 07 2012
Also equals the number of 231-avoiding permutations of n+1 for which descents(w) = peaks(w) = k, where descents(w) is the number of positions i such that w[i]>w[i+1], and peaks(w) is the number of positions i such that w[i-1]w[i+1]. For example, T(4,1) = 6 because 13245, 12435, 14235, 12354, 12534, 15234 are the only 231-avoiding permutations of 5 elements with descents(w) = peaks(w) = 1. - Kyle Petersen, Aug 02 2013
Apparently, a refined irregular triangle related to this triangle (and A097610) is given in the Alexeev et al. link on p. 12. This entry's triangle is also related through Barry's comment to A125181 and A134264. The diagonals of this entry are the rows of A088617. - Tom Copeland, Jun 17 2015
The row length sequence of this irregular triangle is A008619(n) = 1 + floor(n/2). - Wolfdieter Lang, Aug 24 2015

Examples

			The irregular triangle T(n,k) begins:
n\k 0  1   2    3   4  5 ...
0:  1
1:  1
2:  1  1
3:  1  3
4:  1  6   2
5:  1 10  10
6:  1 15  30    5
7:  1 21  70   35
8:  1 28 140  140  14
9:  1 36 252  420 126
10: 1 45 420 1050 630 42
... reformatted. - _Wolfdieter Lang_, Aug 24 2015
		

References

  • Miklos Bona, Handbook of Enumerative Combinatorics, CRC Press (2015), page 617, Corollary 10.8.2
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Section 4.3.

Crossrefs

A107131 (row reversed), A080159 (with trailing zeros), A001006 = row sums, A000108(n) = T(2n, n), A001700(n) = T(2n+1, n), A119020 (eigenvector), A001263 (Narayana numbers), A089627 (gamma vectors of type B associahedra), A101280 (gamma vectors of type A permutohedra).
Cf. A014531.

Programs

  • Maple
    b:= proc(x, y) option remember;
          `if`(y>x or y<0, 0, `if`(x=0, 1, expand(
           b(x-1, y) +b(x-1, y+1) +b(x-1, y-1)*t)))
        end:
    T:= n-> (p-> seq(coeff(p, t, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Feb 05 2014
  • Mathematica
    m=(1-x-(1-2x+x^2-4x^2y)^(1/2))/(2x^2 y); Map[Select[#,#>0&]&, CoefficientList[ Series[m,{x,0,15}],{x,y}]]//Grid (* Geoffrey Critzer, Feb 05 2014 *)
    p[n_] := Hypergeometric2F1[(1-n)/2, -n/2, 2, 4 x]; Table[CoefficientList[p[n], x], {n, 0, 13}] // Flatten (* Peter Luschny, Jan 23 2018 *)
  • PARI
    {T(n, k) = if( k<0 || 2*k>n, 0, n! / ((n-2*k)! * k! * (k+1)!))}
    
  • PARI
    {T(n, k) = if( k<0 || 2*k>n, 0, polcoeff( polcoeff( 2 / (1 - x + sqrt((1 - x)^2 - 4*y*x^2 + x * O(x^n))), n), k))} /* Michael Somos, Feb 14 2006 */
    
  • PARI
    {T(n, k) = n++; if( k<0 || 2*k>n, 0, polcoeff( polcoeff( serreverse( x / (1 + x + y*x^2) + x * O(x^n)), n), k))} /* Michael Somos, Feb 14 2006 */

Formula

T(n,k) = n!/((n-2k)! k! (k+1)!) = A007318(n, 2k)*A000108(k). - Henry Bottomley, Jan 31 2003
E.g.f. row polynomials R(n,y): exp(x)*BesselI(1, 2*x*sqrt(y))/(x*sqrt(y)). - Vladeta Jovovic, Aug 20 2003
G.f. row polynomials R(n,y): 2 / (1 - x + sqrt((1 - x)^2 - 4 *y * x^2)).
From Peter Bala, Oct 28 2008: (Start)
The rows of this triangle are the gamma vectors of the n-dimensional (type A) associahedra (Postnikov et al., p. 38). Cf. A089627 and A101280.
The row polynomials R(n,x) = Sum_{k = 0..n} T(n,k)*x^k begin R(0,x) = 1, R(1,x) = 1, R(2,x) = 1 + x, R(3,x) = 1 + 3*x. They are related to the Narayana polynomials N(n,x) := Sum_{k = 1..n} (1/n)*C(n,k)*C(n,k-1)*x^k through x*(1 + x)^n*R(n, x/(1 + x)^2) = N(n+1,x). For example, for n = 3, x*(1 + x)^3*(1 + 3*x/(1 + x)^2) = x + 6*x^2 + 6*x^3 + x^4, the 4th Narayana polynomial.
Recursion relation: (n + 2)*R(n,x) = (2*n + 1)*R(n-1,x) - (n - 1)*(1 - 4*x)*R(n-2,x), R(0,x) = 1, R(1,x) = 1. (End)
G.f.: M(x,y) satisfies: M(x,y)= 1 + x M(x,y) + y*x^2*M(x,y)^2. - Geoffrey Critzer, Feb 05 2014
T(n,k) = A161642(n,k)*A258820(n,k) = (binomial(n,k)/A003989(n+1, k+1))* A258820(n,k). - Tom Copeland, Jun 18 2015
Let T(n,k;q) = n!*(1+k)/((n-2*k)!*(1+k)!^2)*hypergeom([k,2*k-n],[k+2],q) then T(n,k;0) = A055151(n,k), T(n,k;1) = A008315(n,k) and T(n,k;-1) = A091156(n,k). - Peter Luschny, Oct 16 2015
From Tom Copeland, Jan 21 2016: (Start)
Reversed rows of A107131 are rows of this entry, and the diagonals of A107131 are the columns of this entry. The diagonals of this entry are the rows of A088617. The antidiagonals (bottom to top) of A088617 are the rows of this entry.
O.g.f.: [1-x-sqrt[(1-x)^2-4tx^2]]/(2tx^2), from the relation to A107131.
Re-indexed and signed, this triangle gives the row polynomials of the compositional inverse of the shifted o.g.f. for the Fibonacci polynomials of A011973, x / [1-x-tx^2] = x + x^2 + (1+t) x^3 + (1+2t) x^4 + ... . (End)
Row polynomials are P(n,x) = (1 + b.y)^n = Sum{k=0 to n} binomial(n,k) b(k) y^k = y^n M(n,1/y), where b(k) = A126120(k), y = sqrt(x), and M(n,y) are the Motzkin polynomials of A097610. - Tom Copeland, Jan 29 2016
Coefficients of the polynomials p(n,x) = hypergeom([(1-n)/2, -n/2], [2], 4x). - Peter Luschny, Jan 23 2018
Sum_{k=1..floor(n/2)} k * T(n,k) = A014531(n-1) for n>1. - Alois P. Heinz, Mar 29 2020

A059895 Table a(i,j) = product prime[k]^(Ei[k] AND Ej[k]) where Ei and Ej are the vectors of exponents in the prime factorizations of i and j; AND is the bitwise operation on binary representation of the exponents.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 7, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1
Offset: 1

Views

Author

Marc LeBrun, Feb 06 2001

Keywords

Comments

Analogous to GCD, with AND replacing MIN.

Examples

			The top left 18 X 18 corner of the array:
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1
1,  2,  1,  1,  1,  2,  1,  2,  1,  2,  1,  1,  1,  2,  1,  1,  1,  2
1,  1,  3,  1,  1,  3,  1,  1,  1,  1,  1,  3,  1,  1,  3,  1,  1,  1
1,  1,  1,  4,  1,  1,  1,  4,  1,  1,  1,  4,  1,  1,  1,  1,  1,  1
1,  1,  1,  1,  5,  1,  1,  1,  1,  5,  1,  1,  1,  1,  5,  1,  1,  1
1,  2,  3,  1,  1,  6,  1,  2,  1,  2,  1,  3,  1,  2,  3,  1,  1,  2
1,  1,  1,  1,  1,  1,  7,  1,  1,  1,  1,  1,  1,  7,  1,  1,  1,  1
1,  2,  1,  4,  1,  2,  1,  8,  1,  2,  1,  4,  1,  2,  1,  1,  1,  2
1,  1,  1,  1,  1,  1,  1,  1,  9,  1,  1,  1,  1,  1,  1,  1,  1,  9
1,  2,  1,  1,  5,  2,  1,  2,  1, 10,  1,  1,  1,  2,  5,  1,  1,  2
1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 11,  1,  1,  1,  1,  1,  1,  1
1,  1,  3,  4,  1,  3,  1,  4,  1,  1,  1, 12,  1,  1,  3,  1,  1,  1
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 13,  1,  1,  1,  1,  1
1,  2,  1,  1,  1,  2,  7,  2,  1,  2,  1,  1,  1, 14,  1,  1,  1,  2
1,  1,  3,  1,  5,  3,  1,  1,  1,  5,  1,  3,  1,  1, 15,  1,  1,  1
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 16,  1,  1
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 17,  1
1,  2,  1,  1,  1,  2,  1,  2,  9,  2,  1,  1,  1,  2,  1,  1,  1, 18
A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 AND 3)* 3^(3 AND 5) = 2^1*3^1 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Apr 11 2017: (Start)
A(x,y) = A059896(x,y) / A059897(x,y).
A(x,y) * A059896(x,y) = A(x,y)^2 * A059897(x,y) = x*y.
(End)

Extensions

Data section extended to 120 terms by Antti Karttunen, Apr 11 2017

A054431 Array read by antidiagonals: T(x, y) tells whether (x, y) are coprime (1) or not (0).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Array is read along (x, y) = (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), ...
There are nontrivial infinite paths of 1's in this sequence, moving only 1 step down or to the right at each step. Starting at (1,1), move down to (2,1), then (3,1), ..., (13,1). Then move right to (13,2), (13,3), ..., (13,11). From this point, alternate moving down to the next prime row, and right to the next prime column. - Franklin T. Adams-Watters, May 27 2014

Examples

			Rows start:
  1, 1, 1, 1, 1, 1, ...;
  1, 0, 1, 0, 1, 0, ...;
  1, 1, 0, 1, 1, 0, ...;
  1, 0, 1, 0, 1, 0, ...;
  1, 1, 1, 1, 0, 1, ...;
  1, 0, 0, 0, 1, 0, ...;
		

Crossrefs

Equal to A003989 with non-one values replaced with zeros.

Programs

  • Maple
    reduced_residue_set_0_1_array := n -> one_or_zero(igcd(((n-((trinv(n)*(trinv(n)-1))/2))+1), ((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1) ));
    one_or_zero := n -> `if`((1 = n),(1),(0)); # trinv given at A054425
    A054431_row := n -> seq(abs(numtheory[jacobi](n-k+1,k)),k=1..n);
    for n from 1 to 14 do A054431_row(n) od; # Peter Luschny, Aug 05 2012
  • Mathematica
    t[n_, k_] := Boole[CoprimeQ[n, k]]; Table[t[n-k+1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 21 2012 *)
  • Sage
    def A054431_row(n): return [abs(kronecker_symbol(n-k+1,k)) for k in (1..n)]
    for n in (1..14): print(A054431_row(n)) # Peter Luschny, Aug 05 2012

Formula

T(n, k) = T(n, k-n) + T(n-k, k) starting with T(n, k)=0 if n or k are nonpositive and T(1, 1)=1. T(n, k) = A054521(n, k) if n>=k, = A054521(k, n) if n<=k. Antidiagonal sums are phi(n) = A000010(n). - Henry Bottomley, May 14 2002
As a triangular array for n>=1, 1<=k<=n, T(n,k) = |K(n-k+1|k)| where K(i|j) is the Kronecker symbol. - Peter Luschny, Aug 05 2012
Dirichlet g.f.: Sum_{n>=1} Sum_{k>=1} [gcd(n,k)=1]/n^s/k^c = zeta(s)*zeta(c)/zeta(s + c). - Mats Granvik, May 19 2021

A345415 Table read by upward antidiagonals: Given m, n >= 1, write gcd(m,n) as d = u*m+v*n where u, v are minimal; T(m,n) = u.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, -1, 1, 0, 0, 0, 1, 1, 0, 1, 1, -1, -2, 1, 0, 0, -1, 0, 2, 1, 1, 0, 1, 0, 1, -1, 1, -3, 1, 0, 0, 1, 1, 0, -1, -2, 1, 1, 0, 1, -1, -1, 1, -1, 2, 3, -4, 1, 0, 0, 0, 0, -2, 0, 3, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, -1, -3, -2, -3, -5, 1, 0, 0, -1, 1, -1, 1, 0, -1, 2, -2, 4, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2021

Keywords

Comments

The gcd is given in A003989, and v is given in A345416. Minimal means minimize u^2+v^2. We follow Maple, PARI, etc., in setting u=0 and v=1 when m=n. If we ignore the diagonal, the v table is the transpose of the u table.

Examples

			The gcd table (A003989) begins:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]
[1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1]
[1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4]
[1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1]
[1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2]
[1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1]
[1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8]
[1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1]
[1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1]
[1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 4]
...
The u table (this entry) begins:
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[0, 0, -1, 1, -2, 1, -3, 1, -4, 1, -5, 1, -6, 1, -7, 1]
[0, 1, 0, -1, 2, 1, -2, 3, 1, -3, 4, 1, -4, 5, 1, -5]
[0, 0, 1, 0, -1, -1, 2, 1, -2, -2, 3, 1, -3, -3, 4, 1]
[0, 1, -1, 1, 0, -1, 3, -3, 2, 1, -2, 5, -5, 3, 1, -3]
[0, 0, 0, 1, 1, 0, -1, -1, -1, 2, 2, 1, -2, -2, -2, 3]
[0, 1, 1, -1, -2, 1, 0, -1, 4, 3, -3, -5, 2, 1, -2, 7]
[0, 0, -1, 0, 2, 1, 1, 0, -1, -1, -4, -1, 5, 2, 2, 1]
[0, 1, 0, 1, -1, 1, -3, 1, 0, -1, 5, -1, 3, -3, 2, -7]
[0, 0, 1, 1, 0, -1, -2, 1, 1, 0, -1, -1, 4, 3, -1, -3]
[0, 1, -1, -1, 1, -1, 2, 3, -4, 1, 0, -1, 6, -5, -4, 3]
[0, 0, 0, 0, -2, 0, 3, 1, 1, 1, 1, 0, -1, -1, -1, -1]
...
The v table (A345416) begins:
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]
[1, -1, 1, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1]
[1, 1, -1, 1, 1, 1, -1, 0, 1, 1, -1, 0, 1, 1, -1, 0]
[1, -2, 2, -1, 1, 1, -2, 2, -1, 0, 1, -2, 2, -1, 0, 1]
[1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 0, 1, 1, 1, -1]
[1, -3, -2, 2, 3, -1, 1, 1, -3, -2, 2, 3, -1, 0, 1, -3]
[1, 1, 3, 1, -3, -1, -1, 1, 1, 1, 3, 1, -3, -1, -1, 0]
[1, -4, 1, -2, 2, -1, 4, -1, 1, 1, -4, 1, -2, 2, -1, 4]
[1, 1, -3, -2, 1, 2, 3, -1, -1, 1, 1, 1, -3, -2, 1, 2]
[1, -5, 4, 3, -2, 2, -3, -4, 5, -1, 1, 1, -5, 4, 3, -2]
[1, 1, 1, 1, 5, 1, -5, -1, -1, -1, -1, 1, 1, 1, 1, 1]
...
		

Crossrefs

Programs

  • Maple
    mygcd:=proc(a,b) local d,s,t; d := igcdex(a,b,`s`,`t`); [a,b,d,s,t]; end;
    gcd_rowu:=(m,M)->[seq(mygcd(m,n)[4],n=1..M)];
    for m from 1 to 12 do lprint(gcd_rowu(m,16)); od;
  • Mathematica
    T[m_, n_] := Module[{u, v}, MinimalBy[{u, v} /. Solve[u^2 + v^2 <= 26 && u*m + v*n == GCD[m, n], {u, v}, Integers], #.#&][[1, 1]]];
    Table[T[m - n + 1, n], {m, 1, 13}, {n, 1, m}] // Flatten (* Jean-François Alcover, Mar 27 2023 *)
Previous Showing 11-20 of 59 results. Next