cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 115 results. Next

A291751 Lexicographically earliest such sequence a that a(i) = a(j) => A003557(i) = A003557(j) and A048250(i) = A048250(j), for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 6, 11, 12, 13, 13, 14, 10, 15, 16, 17, 18, 19, 13, 20, 21, 22, 23, 24, 25, 26, 18, 27, 28, 29, 28, 30, 31, 32, 33, 34, 22, 35, 36, 37, 38, 26, 28, 39, 40, 41, 26, 42, 29, 43, 26, 44, 45, 46, 32, 47, 48, 35, 49, 50, 51, 52, 53, 54, 35, 52, 26, 55, 56, 57, 58, 59, 35, 60, 45, 61, 62, 63, 51, 64, 65, 66, 67, 68, 46, 69, 70, 47, 71
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2017

Keywords

Comments

Restricted growth sequence transform of A291750, which means that this is the lexicographically least sequence a, such that for all i, j: a(i) = a(j) <=> A291750(i) = A291750(j) <=> A003557(i) = A003557(j) and A048250(i) = A048250(j). That this is equal to the definition given in the title follows because any such lexicographically least sequence satisfying relation <=> is also the least sequence satisfying relation => with the same parameters.
Sigma (A000203) and psi (A001615) are functions of this sequence. See comments in A291750 for the reason. For example, to find the value of A001615(n) when we know just a(n), but without knowing n, let m be the least i for which a(i) = a(n); then A001615(n) = A003991(A291750(m)) = A003557(m) * A048250(m).

Crossrefs

Differs from A286603 for the first time at n = 25, where a(25) = 21, while A286603(25) = 14.

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    v291751 = rgs_transform(vector(65537,n,A291750(n)));
    A291751(n) = v291751[n];

Extensions

Name changed and comments added by Antti Karttunen, Nov 24 2018

A098350 Multiplication table of the primes read by antidiagonals.

Original entry on oeis.org

4, 6, 6, 10, 9, 10, 14, 15, 15, 14, 22, 21, 25, 21, 22, 26, 33, 35, 35, 33, 26, 34, 39, 55, 49, 55, 39, 34, 38, 51, 65, 77, 77, 65, 51, 38, 46, 57, 85, 91, 121, 91, 85, 57, 46, 58, 69, 95, 119, 143, 143, 119, 95, 69, 58, 62, 87, 115, 133, 187, 169, 187, 133, 115, 87, 62
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004

Keywords

Comments

Contains only semiprimes (A001358).
sum{n>=1, k>=1} 1/T(n,k)^s = P(s)^2, where P is the Prime Zeta Function. - Enrique Pérez Herrero, Jun 24 2012

Examples

			 4,  6, 10, 14, 22, 26, 34, 38, 46, 58,...
 6,  9, 15, 21, 33, 39, 51, 57, 69, 87,...
10, 15, 25, 35, 55, 65, 85, 95,115,145,...
14, 21, 35, 49, 77, 91,119,133,161,203,...
22, 33, 55, 77,121,143,187,209,253,319,...
26, 39, 65, 91,143,169,221,247,299,377,...
34, 51, 85,119,187,221,289,323,391,493,...
		

Crossrefs

Formula

T(n,k) = A003991(prime(n),prime(k)).
T(n,k) = T(k,n) = A087112(n,k).

A058071 A Fibonacci triangle: triangle T(n,k) = Fibonacci(k+1)*Fibonacci(n-k+1), for n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 3, 5, 3, 4, 3, 5, 8, 5, 6, 6, 5, 8, 13, 8, 10, 9, 10, 8, 13, 21, 13, 16, 15, 15, 16, 13, 21, 34, 21, 26, 24, 25, 24, 26, 21, 34, 55, 34, 42, 39, 40, 40, 39, 42, 34, 55, 89, 55, 68, 63, 65, 64, 65, 63, 68, 55, 89, 144, 89, 110, 102, 105, 104, 104, 105, 102, 110, 89, 144
Offset: 0

Views

Author

N. J. A. Sloane, Nov 24 2000

Keywords

Comments

Or, multiplication table of the positive Fibonacci numbers read by antidiagonals.
Or, triangle of products of nonzero Fibonacci numbers.
Or, a two-dimensional square Fibonacci array read by antidiagonals, with offset 1: T(1,1) = T(1,2) = T(2,1) = T(2,2) = 1; thereafter T(m,n) = max {T(m,n-2) + T(m,n-1), T(m-2,n) + T(m-1,n), T(m-2,n-2) + T(m-1,n-1)}. If "max" is changed to "min" we get A283845. - N. J. A. Sloane, Mar 31 2017
Row sums are A001629 (Fibonacci numbers convolved with themselves.). The main diagonal and first subdiagonal are Fibonacci numbers, for other entries T(n,k) = T(n-1,k) + T(n-2,k). The central numbers form A006498. - Gerald McGarvey, Jun 02 2005
Alternating row sums = (1, 0, 3, 0, 8, ...), given by Fibonacci(2n) if n even, else zero.
Row n = edge-counting vector for the Fibonacci cube F(n+1) embedded in the natural way in the hypercube Q(n+1). - Emanuele Munarini, Apr 01 2008
The augmentation of A058071 is the triangle A193595. To fit the definition of augmented triangle at A103091, it is helpful to represent A058071 using p(n,k)=F(k+1)*F(n+1-k) for 0<=k<=n. - Clark Kimberling, Jul 31 2011
T(n,k) = number of appearances of a(k) in p(n) in the n-th convergent p(n)/q(n) of the formal infinite continued fraction [a(0), a(1), ...]; e.g., p(3) = a(0)*a(1)*a(2)*a(3) + a(0)*a(1) + a(0)*a(3) + a(2)*a(3) + 1. Also, T(n,k) = number of appearances of a(k+1) in q(n+1); e.g., q(3) = a(1)*a(2)*a(3) + a(1) + a(3). - Clark Kimberling, Dec 21 2015
Each row is a palindrome, and the central term of row 2n is the square of the F(n+1), where F = A000045 (Fibonacci numbers). - Clark Kimberling, Dec 21 2015
Also called Hosoya's triangle, after the Japanese chemist Haruo Hosoya (b. 1936). - Amiram Eldar, Jun 10 2021

Examples

			Triangle begins as:
   1;
   1,  1;
   2,  1,  2;
   3,  2,  2,  3;
   5,  3,  4,  3,  5;
   8,  5,  6,  6,  5,  8;
  13,  8, 10,  9, 10,  8, 13;
  21, 13, 16, 15, 15, 16, 13, 21;
  34, 21, 26, 24, 25, 24, 26, 21, 34;
  ...
As a square array:
   1,  1,  2,  3,  5,  8, 13, 21, ...
   1,  1,  2,  3,  5,  8, 13, 21, ...
   2,  2,  4,  6, 10, 16, 26, ...
   3,  3,  6,  9, 15, 24, ...
   5,  5, 10, 15, 25, ...
   8,  8, 16, 24, ...
  13, 13, 26, ...
  21, 21, ...
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Chap. 15, Hosoya's Triangle, Wiley, New York, 2001.

Crossrefs

Programs

  • Haskell
    a058071 n k = a058071_tabl !! n !! k
    a058071_row n = a058071_tabl !! n
    a058071_tabl = map (\fs -> zipWith (*) fs $ reverse fs) a104763_tabl
    -- Reinhard Zumkeller, Aug 15 2013
    
  • Magma
    [Fibonacci(k+1)*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 06 2022
    
  • Mathematica
    row[n_] := Table[Fibonacci[k]*Fibonacci[n-k+1], {k, 1, n}]; Table[row[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 16 2013 *)
  • PARI
    T(n,k)=fibonacci(k)*fibonacci(n+2-k) \\ Charles R Greathouse IV, Feb 07 2017
    
  • SageMath
    flatten([[fibonacci(k+1)*fibonacci(n-k+1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 06 2022

Formula

Row n: F(1)*F(n), F(2)*F(n-1), ..., F(n)*F(1).
G.f.: T(x,y) = 1/((1-x-x^2)(1-xy-x^2y^2)). Recurrence: T(n+4,k+2) = T(n+3,k+2) + T(n+3,k+1) + T(n+2,k+2) - T(n+2,k+1) + T(n+2,k) - T(n+1,k+1) - T(n+1,k) - T(n,k). - Emanuele Munarini, Apr 01 2008
T(n,k) = A104763(n+1,k+1) * A104763(n+1,n+1-k). - Reinhard Zumkeller, Aug 15 2013
Column k is the (generalized) Fibonacci sequence having first two terms F(k+1), F(k+1). - Clark Kimberling, Dec 21 2015
From G. C. Greubel, Apr 06 2022: (Start)
T(n,k) = Fibonacci(k+1)*Fibonacci(n-k+1).
Sum_{k=0..n} T(n, k) = A001629(n+2).
Sum_{k=0..floor(n/2)} T(n, k) = A024458(n+1).
Sum_{k=1..n-1} T(n, k) = A004798(n-1), n >= 2.
Sum_{k=0..floor(n/2)} T(n-k, k) = A250111(n+2).
T(n, 0) = A000045(n+1).
T(2*n, n) = A007598(n+1).
T(2*n+1, n) = A001654(n+1).
T(n, n-k) = T(n, k). (End)

Extensions

More terms from James Sellers, Nov 27 2000
Edited by N. J. A. Sloane, Sep 15 2008 at the suggestion of R. J. Mathar
Name edited by G. C. Greubel, Apr 06 2022

A329329 Multiplicative operator of a ring over the positive integers that has A059897(.,.) as additive operator and is isomorphic to GF(2)[x,y] with A329050(i,j) the image of x^i * y^j.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 10, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1

Views

Author

Peter Munn, Nov 11 2019

Keywords

Comments

Square array A(n,k), n >= 1, k >= 1, read by descending antidiagonals.
The group defined by the binary operation A059897(.,.) over the positive integers is commutative with all elements self-inverse, and isomorphic to the additive group of GF(2) polynomial rings such as GF(2)[x,y]. There is a unique isomorphism extending each bijective mapping between respective minimal generating sets. The lexicographically earliest minimal generating set for the A059897 group is A050376, often called the Fermi-Dirac primes. This set has a natural arrangement in a square array, given by A329050(i,j) = prime(i+1)^(2^j), i >= 0, j >= 0. The most meaningful generating set for the additive group of GF(2)[x,y] is {x^i * y^j: i >= 0, j >= 0}, which similarly forms a square array. All this makes A329050(i,j) especially appropriate to be the image (under an isomorphism) of the GF(2) polynomial x^i * y^j.
Using g to denote the intended isomorphism, we specify g(x^i * y^j) = A329050(i,j). This maps minimal generating sets of the additive groups, so the definition of g is completed by specifying g(a+b) = A059897(g(a), g(b)). We then calculate the image under g of polynomial multiplication in GF(2)[x,y], giving us this sequence as the matching multiplicative operator for an isomorphic ring over the positive integers. Using f to denote the inverse of g, A[n,k] = g(f(n) * f(k)).
See the formula section for an alternative definition based on the A329050 array, independent of GF(2)[x,y].
Closely related to A306697 and A297845. If A059897 is replaced in the alternative definition by A059896 (and the definition is supplemented by the derived identity for the absorbing element, shown in the formula section), we get A306697; if A059897 is similarly replaced by A003991 (integer multiplication), we get A297845. This sequence and A306697, considered as multiplicative operators, are carryless arithmetic equivalents of A297845. A306697 uses a method analogous to binary-OR when there would be a multiplicative carry, while this sequence uses a method analogous to binary exclusive-OR. In consequence A(n,k) <> A297845(n,k) exactly when A306697(n,k) <> A297845(n,k). This relationship is not symmetric between the 3 sequences: there are n and k such that A(n,k) = A306697(n,k) <> A297845(n,k). For example A(54,72) = A306697(54,72) = 273375000 <> A297845(54,72) = 22143375000.

Examples

			Square array A(n, k) begins:
  n\k|  1   2   3    4    5    6    7     8     9    10    11    12
  ---+-------------------------------------------------------------
    1|  1   1   1    1    1    1    1     1     1     1     1     1
    2|  1   2   3    4    5    6    7     8     9    10    11    12
    3|  1   3   5    9    7   15   11    27    25    21    13    45
    4|  1   4   9   16   25   36   49    64    81   100   121   144
    5|  1   5   7   25   11   35   13   125    49    55    17   175
    6|  1   6  15   36   35   10   77   216   225   210   143   540
    7|  1   7  11   49   13   77   17   343   121    91    19   539
    8|  1   8  27   64  125  216  343    32   729  1000  1331  1728
    9|  1   9  25   81   49  225  121   729   625   441   169  2025
   10|  1  10  21  100   55  210   91  1000   441    22   187  2100
   11|  1  11  13  121   17  143   19  1331   169   187    23  1573
   12|  1  12  45  144  175  540  539  1728  2025  2100  1573    80
		

Crossrefs

A059897, A225546, A329050 are used to express relationship between terms of this sequence.
Related binary operations: A297845/A003991, A306697/A059896.

Programs

  • PARI
    \\ See Links section.

Formula

Alternative definition: (Start)
A(A329050(i_1, j_1), A329050(i_2, j_2)) = A329050(i_1+i_2, j_1+j_2).
A(A059897(n,k), m) = A059897(A(n,m), A(k,m)).
A(m, A059897(n,k)) = A059897(A(m,n), A(m,k)).
(End)
Derived identities: (Start)
A(n,1) = A(1,n) = 1 (1 is an absorbing element).
A(n,2) = A(2,n) = n.
A(n,k) = A(k,n).
A(n, A(m,k)) = A(A(n,m), k).
(End)
A(A019565(i), 2^j) = A019565(i)^j = A329332(i,j).
A(A225546(i), A225546(j)) = A225546(A(i,j)).
A(n,k) = A306697(n,k) = A297845(n,k), for n = A050376(i), k = A050376(j).
A(n,k) <= A306697(n,k) <= A297845(n,k).
A(n,k) < A297845(n,k) if and only if A306697(n,k) < A297845(n,k).

A075362 Triangle read by rows with the n-th row containing the first n multiples of n.

Original entry on oeis.org

1, 2, 4, 3, 6, 9, 4, 8, 12, 16, 5, 10, 15, 20, 25, 6, 12, 18, 24, 30, 36, 7, 14, 21, 28, 35, 42, 49, 8, 16, 24, 32, 40, 48, 56, 64, 9, 18, 27, 36, 45, 54, 63, 72, 81, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 12, 24, 36, 48, 60, 72, 84
Offset: 1

Views

Author

Amarnath Murthy, Sep 20 2002

Keywords

Comments

(Conjecture) Let N=2*n and k=1,...,n. Let A_{N,0}, A_{N,1}, ..., A_{N,n-1} be the n X n unit-primitive matrices (see [Jeffery]) associated with N. Define the Chebyshev polynomials of the second kind by the recurrence U_0(x)=1, U_1(x)=2*x and U_r(x)=2*x*U_(r-1)(x)-U_(r-2)(x) (r>1). Define the column vectors V_(k-1)=(U_(k-1)(cos(Pi/N)), U_(k-1)(cos(3*Pi/N)), ..., U_(k-1)(cos((2*n-1)*Pi/N)))^T, where B^T denotes the transpose of matrix B. Let S_N=[V_0,V_1,...,V_(n-1)] be the n X n matrix formed by taking the components of vector V_(k-1) as the entries in column k-1 (V_(k-1) gives the ordered spectrum of A_{N,k-1}). Let X_N=[S_N]^T*S_N, and let [X_N](i,j) denote the entry in row i and column j of X_N, i,j in {0,...,n-1}. Then also T(n,k)=[X_N](k-1,k-1); that is, row n of the triangle is given by the main diagonal entries of X_N. Hence T(n,k) is the sum of squares T(n,k) = sum[m=1,...,n (U_(k-1)(cos((2*m-1)*Pi/N)))^2]=[V_(k-1)]^T*V_(k-1). - L. Edson Jeffery, Jan 20 2012
Conjecture that antidiagonal sums are A023855. - L. Edson Jeffery, Jan 20 2012
Viewed as a sequence of rows, consider the subsequences (of rows) that contain every positive integer. The lexicographically latest of these subsequences consists of the rows with row numbers in A066680 U {1}; this is the only one that contains its own row numbers only once. - Peter Munn, Dec 04 2019

Examples

			Triangle begins:
  1;
  2,  4;
  3,  6,  9;
  4,  8, 12, 16;
  5, 10, 15, 20, 25;
  6, 12, 18, 24, 30, 36;
		

Crossrefs

A002411 gives the sum of the n-th row. A141419 is similarly derived.
Cf. A003991 (square multiplication table).
Main diagonal gives A000290.

Programs

  • Haskell
    a075362 n k = a075362_tabl !! (n-1) !! (k-1)
    a075362_row n = a075362_tabl !! (n-1)
    a075362_tabl = zipWith (zipWith (*)) a002260_tabl a002024_tabl
    -- Reinhard Zumkeller, Nov 11 2012, Oct 04 2012
  • Maple
    T(n,k):=piecewise(k<=n,sum(i*binomial(k,i)*binomial(n+1-k,n-i),i=1..k),k>n,0) # Mircea Merca, Apr 11 2012
  • Mathematica
    Table[NestList[n+#&,n,n-1],{n,15}]//Flatten (* Harvey P. Dale, Jun 14 2022 *)

Formula

T(n,k) = n*k, 1 <= k <= n. - Reinhard Zumkeller, Mar 07 2010
T(n,k) = A050873(n,k)*A051173(n,k), 1 <= k <= n. - Reinhard Zumkeller, Apr 25 2011
T(n,k) = Sum_{i=1..k} i*binomial(k,i)*binomial(n+1-k,n-i), 1 <= k <= n. - Mircea Merca, Apr 11 2012
T(n,k) = A002260(n,k)*A002024(n,k) = (A215630(n,k)-A215631(n,k))/2, 1 <= k <= n. - Reinhard Zumkeller, Nov 11 2012
a(n) = A223544(n) - 1; a(n) = i*(t+1), where i = n - t*(t+1)/2, t = floor((-1 + sqrt(8*n-7))/2). - Boris Putievskiy, Jul 24 2013

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003

A061017 List in which n appears d(n) times, where d(n) [A000005] is the number of divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 24
Offset: 1

Views

Author

Jont Allen (jba(AT)research.att.com), May 25 2001

Keywords

Comments

The union of N, 2N, 3N, ..., where N = {1, 2, 3, 4, 5, 6, ...}. In other words, the numbers {m*n, m >= 1, n >= 1} sorted into nondecreasing order.
Considering the maximal rectangle in each of the Ferrers graphs of partitions of n, a(n) is the smallest such maximal rectangle; a(n) is also an inverse of A006218. - Henry Bottomley, Mar 11 2002
The numbers in A003991 arranged in numerical order. - Matthew Vandermast, Feb 28 2003
Least k such that tau(1) + tau(2) + tau(3) + ... + tau(k) >= n. - Michel Lagneau, Jan 04 2012
The number 1 appears only once, primes appear twice, squares of primes appear thrice. All other positive integers appear at least four times. - Alonso del Arte, Nov 24 2013

Examples

			Array begins:
   1
   2  2
   3  3
   4  4  4
   5  5
   6  6  6  6
   7  7
   8  8  8  8
   9  9  9
  10 10 10 10
  11 11
  12 12 12 12 12 12
  13 13
  14 14 14 14
  15 15 15 15
  16 16 16 16 16
  17 17
  18 18 18 18 18 18
  19 19
  20 20 20 20 20 20
  21 21 21 21
  22 22 22 22
  23 23
  24 24 24 24 24 24 24 24
		

Crossrefs

Cf. A000005. An inverse to A006218.

Programs

  • Maple
    with(numtheory); t1:=[]; for i from 1 to 1000 do for j from 1 to tau(i) do t1:=[op(t1),i]; od: od: t1:=sort(t1);
  • Mathematica
    Flatten[Table[Table[n, {Length[Divisors[n]]}], {n, 30}]]
  • PARI
    a(n)=if(n<0,0,t=1;while(sum(k=1,t,floor(t/k))Benoit Cloitre, Nov 08 2009

Formula

a(n) >= pi(n+1) for all n; a(n) >= pi(n) + 1 for all n >= 24 (cf. A098357, A088526, A006218, A052511). - N. J. A. Sloane, Oct 22 2008
a(n) = A027750(n) * A056538(n). - Charles Kusniec, Jan 21 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 (A072691). - Amiram Eldar, Jan 14 2024

Extensions

More terms from Erich Friedman, Jun 01 2001

A322744 Array T(n,k) = (3*n*k - A319929(n,k))/2, n >= 1, k >= 1, read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 8, 8, 4, 5, 12, 11, 12, 5, 6, 14, 16, 16, 14, 6, 7, 18, 19, 24, 19, 18, 7, 8, 20, 24, 28, 28, 24, 20, 8, 9, 24, 27, 36, 33, 36, 27, 24, 9, 10, 26, 32, 40, 42, 42, 40, 32, 26, 10, 11, 30, 35, 48, 47, 54, 47, 48, 35, 30, 11, 12, 32, 40, 52, 56, 60, 60, 56, 52, 40, 32, 12
Offset: 1

Views

Author

David Lovler, Dec 24 2018

Keywords

Comments

Associative multiplication-like table whose values depend on whether n and k are odd or even.
Associativity is proved by checking the formula with eight cases of three odd and even arguments. T(n,k) is distributive as long as partitioning an even number into two odd numbers is not allowed.

Examples

			Array T(n,k) begins:
   1   2   3   4   5   6   7   8   9  10
   2   6   8  12  14  18  20  24  26  30
   3   8  11  16  19  24  27  32  35  40
   4  12  16  24  28  36  40  48  52  60
   5  14  19  28  33  42  47  56  61  70
   6  18  24  36  42  54  60  72  78  90
   7  20  27  40  47  60  67  80  87 100
   8  24  32  48  56  72  80  96 104 120
   9  26  35  52  61  78  87 104 113 130
  10  30  40  60  70  90 100 120 130 150
		

Crossrefs

Equals A003991 + A322630 - A319929.
0 and diagonal is A354594.

Programs

  • Mathematica
    Table[Function[n, (3 n k - If[OddQ@ n, If[OddQ@ k, n + k - 1, k], If[OddQ@ k, n, 0]])/2][m - k + 1], {m, 12}, {k, m}] // Flatten (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    T319929(n, k) = if (n%2, if (k%2, n+k-1, k), if (k%2, n, 0));
    T(n,k) = (3*n*k - T319929(n,k))/2;
    matrix(6, 6, n, k, T(n, k)) \\ Michel Marcus, Dec 27 2018

Formula

T(n,k) = (3*n*k - (n + k - 1))/2 if n is odd and k is odd;
T(n,k) = (3*n*k - n)/2 if n is even and k is odd;
T(n,k) = (3*n*k - k)/2 if n is odd and k is even;
T(n,k) = 3*n*k/2 if n is even and k is even.
T(n,k) = 6*floor(n/2)*floor(k/2) + A319929(n,k).
T(n,n) = A354594(n). - David Lovler, Jul 09 2022

A327263 Array T(n,k) in which the i-th row consists of numbers > 1 not in array U(i;n,k) = (i*n*k - (i-2)*A319929(n,k))/2 where i >= 1, n >= 1 and k >= 1, read by antidiagonals.

Original entry on oeis.org

3, 5, 2, 9, 3, 2, 13, 5, 3, 2, 21, 7, 4, 3, 2, 25, 11, 5, 4, 3, 2, 33, 13, 7, 5, 4, 3, 2, 37, 17, 9, 6, 5, 4, 3, 2, 45, 19, 10, 7, 6, 5, 4, 3, 2, 57, 23, 13, 9, 7, 6, 5, 4, 3, 2, 61, 29, 15, 11, 8, 7, 6, 5, 4, 3, 2, 73, 31, 17, 12, 9, 8, 7, 6, 5, 4, 3, 2
Offset: 1

Views

Author

David Lovler, Oct 15 2019

Keywords

Comments

All the U(i;n,k) mimic the ordinary multiplication table in that they are commutative, associative, have identity element 1 and have 0. However (except when i=2) they are partially distributive, meaning that distributivity works except if an even number is partitioned into a sum of two odd numbers. Only when i=2, the odd-even-dependent A319929 term disappears and normal distributivity holds.
U(0;n,k) = A319929(n,k);
U(1;n,k) = A322630(n,k);
U(2;n,k) = n*k;
U(3;n,k) = A322744(n,k);
U(4;n,k) = A327259(n,k);
U(i;n,k) = 2i*floor(n/2)*floor(k/2) + A319929(n,k).
Row 1 is 2p-1 where p is a prime number (A076274 without 1).
Row 2 is the prime numbers.
Row 3 is A307002.
Row 4 is A327261.
The i-th row of T(n,k) consists of numbers that sieve out of the array U(i;n,k) = (i*n*k - (i-2)*A319929(n,k))/2, in numerical order.
From David Lovler, Sep 02 2020: (Start)
Row 1 has no even numbers. Row 2 has one even number. Generally, the even numbers of the i-th row start with i-1 consecutive even numbers (from 2). This is because U(i;2,2) = 2*i gives the first even number not in row i.
Row 3 seems to have even numbers that, after 2, coincide with A112774 which has an infinite number of terms. For i > 3, as i increases, row i has a denser presence of even numbers, thus each row has an infinite number of even terms.
Generalization of the twin prime conjecture: Since row 2 is the prime numbers, we can observe the twin prime conjecture that after the first three odd primes, the sprinkling of pairs of consecutive prime numbers never ends. Concerning just odd terms, a similar conjecture can be stated for rows i >= 3. Row 3 starts with four odd numbers then the sprinkling of three consecutive odd number never ends. Row 4 starts with five odd numbers then the sprinkling of four consecutive odd numbers never ends. The pattern continues as row i starts with i+1 odd numbers then the sprinkling of i consecutive odd numbers never ends. We can take this back to row 1 which starts with two odd numbers then continues with isolated odd numbers.
Studying the even terms, there is an analog to the above generalization of the twin prime conjecture. Row 3 starts with two even numbers then continues with isolated even numbers. Row 4 starts with three even numbers then the sprinkling of pairs of consecutive even numbers never ends. Row 5 starts with four even numbers then the sprinkling of three consecutive even numbers never ends. The pattern continues as row i starts with i-1 even numbers then the sprinkling of i-2 consecutive even numbers never ends.
(End)

Examples

			3  5  9  13  21  25  33  37  45  57  61  73  81  85  93 105 117 121 133 141 145 ...
2  3  5   7  11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71  73 ...
2  3  4   5   7   9  10  13  15  17  21  22  23  25  29  31  34  37  39  41  45 ...
2  3  4   5   6   7   9  11  12  14  15  17  19  21  22  25  27  28  29  31  35 ...
2  3  4   5   6   7   8   9  11  13  14  16  17  18  19  21  23  25  26  28  29 ...
2  3  4   5   6   7   8   9  10  11  13  15  16  18  19  20  21  22  23  25  27 ...
2  3  4   5   6   7   8   9  10  11  12  13  15  17  18  20  21  22  23  24  25 ...
2  3  4   5   6   7   8   9  10  11  12  13  14  15  17  19  20  22  23  24  25 ...
2  3  4   5   6   7   8   9  10  11  12  13  14  15  16  17  19  21  22  24  25 ...
2  3  4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  21  23  24 ...
...
		

Crossrefs

Programs

  • Mathematica
    row=12;max=200;U[i_,n_,k_]:=(i*n*k-(i-2)If[OddQ@n,If[OddQ@k,n+k-1,k],If[OddQ@k,n,0]])/2;t=Table[c=Union@Flatten@Table[U[i,n,k],{n,2,max},{k,2,max}];Complement[Range[2,max],c][[;;row]],{i,row}];Flatten@Table[t[[m,k-m+1]],{k,row},{m,k}] (* Giorgos Kalogeropoulos, Jun 08 2021 *)

Formula

With one exception there are likely no formulas for the rows of T(n,k) since their creation is based on a sieving process like the familiar prime number sieve. The exception is T(1,k) = 2*T(2,k)-1.

A306697 Square array T(n, k) read by antidiagonals, n > 0 and k > 0: T(n, k) is obtained by applying a Minkowski sum to sets related to the Fermi-Dirac factorizations of n and of k (see Comments for precise definition).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 30, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1

Views

Author

Rémy Sigrist, Mar 05 2019

Keywords

Comments

For any m > 0:
- let F(m) be the set of distinct Fermi-Dirac primes (A050376) with product m,
- for any i >=0 0 and j >= 0, let f(prime(i+1)^(2^i)) be the lattice point with coordinates X=i and Y=j (where prime(k) denotes the k-th prime number),
- f establishes a bijection from the Fermi-Dirac primes to the lattice points with nonnegative coordinates,
- let P(m) = { f(p) | p in F(m) },
- P establishes a bijection from the nonnegative integers to the set, say L, of finite sets of lattice points with nonnegative coordinates,
- let Q be the inverse of P,
- for any n > 0 and k > 0:
T(n, k) = Q(P(n) + P(k))
where "+" denotes the Minkowski addition on L.
This sequence has similarities with A297845, and their data sections almost match; T(6, 6) = 30, however A297845(6, 6) = 90.
This sequence has similarities with A067138; here we work on dimension 2, there in dimension 1.
This sequence as a binary operation distributes over A059896, whereas A297845 distributes over multiplication (A003991) and A329329 distributes over A059897. See the comment in A329329 for further description of the relationship between these sequences. - Peter Munn, Dec 19 2019

Examples

			Array T(n, k) begins:
  n\k|  1   2   3    4    5    6    7     8     9    10    11    12
  ---+-------------------------------------------------------------
    1|  1   1   1    1    1    1    1     1     1     1     1     1
    2|  1   2   3    4    5    6    7     8     9    10    11    12
    3|  1   3   5    9    7   15   11    27    25    21    13    45
    4|  1   4   9   16   25   36   49    64    81   100   121   144
    5|  1   5   7   25   11   35   13   125    49    55    17   175
    6|  1   6  15   36   35   30   77   216   225   210   143   540
    7|  1   7  11   49   13   77   17   343   121    91    19   539
    8|  1   8  27   64  125  216  343   128   729  1000  1331  1728
    9|  1   9  25   81   49  225  121   729   625   441   169  2025
   10|  1  10  21  100   55  210   91  1000   441   110   187  2100
   11|  1  11  13  121   17  143   19  1331   169   187    23  1573
   12|  1  12  45  144  175  540  539  1728  2025  2100  1573   720
		

Crossrefs

Columns (some differing for term 1) and equivalently rows: A003961(3), A000290(4), A045966(5), A045968(7), A045970(11).
Related binary operations: A067138, A059896, A297845/A003991, A329329/A059897.

Programs

  • PARI
    \\ See Links section.

Formula

For any m > 0, n > 0, k > 0, i >= 0, j >= 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 3) = A003961(n),
- T(n, 4) = n^2 (A000290),
- T(n, 5) = A357852(n),
- T(n, 7) = A045968(n) (when n > 1),
- T(n, 11) = A045970(n) (when n > 1),
- T(n, 2^(2^i)) = n^(2^i),
- T(2^i, 2^j) = 2^A067138(i, j),
- T(A019565(i), A019565(j)) = A019565(A067138(i, j)),
- T(A000040(n), A000040(k)) = A000040(n + k - 1),
- T(2^(2^i), 2^(2^j)) = 2^(2^(i + j)),
- A001221(T(n, k)) <= A001221(n) * A001221(k),
- A064547(T(n, k)) <= A064547(n) * A064547(k).
From Peter Munn, Dec 05 2019:(Start)
T(A329050(i_1, j_1), A329050(i_2, j_2)) = A329050(i_1+i_2, j_1+j_2).
Equivalently, T(prime(i_1 - 1)^(2^(j_1)), prime(i_2 - 1)^(2^(j_2))) = prime(i_1+i_2 - 1)^(2^(j_1+j_2)), where prime(i) = A000040(i).
T(A059896(i,j), k) = A059896(T(i,k), T(j,k)) (T distributes over A059896).
T(A019565(i), 2^j) = A019565(i)^j.
T(A225546(i), A225546(j)) = A225546(T(i,j)).
(End)

A341520 Square array A(n,k) = A156552(A005940(1+n)*A005940(1+k)), read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 5, 5, 3, 4, 7, 6, 7, 4, 5, 9, 11, 11, 9, 5, 6, 11, 10, 15, 10, 11, 6, 7, 13, 13, 19, 19, 13, 13, 7, 8, 15, 14, 23, 12, 23, 14, 15, 8, 9, 17, 23, 27, 21, 21, 27, 23, 17, 9, 10, 19, 18, 31, 22, 27, 22, 31, 18, 19, 10, 11, 21, 21, 35, 39, 29, 29, 39, 35, 21, 21, 11, 12, 23, 22, 39, 20, 47, 30, 47, 20, 39, 22, 23, 12
Offset: 0

Views

Author

Antti Karttunen, Feb 13 2021

Keywords

Comments

The indices run as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), etc. The array is symmetric.
This array defines a binary operation on the nonnegative integers that matches up the zeros in the binary representation of each operand (starting from the right, and including as many leading zeros as necessary) and concatenates the two (possibly null) strings of ones to the right of each matched pair of zeros. See the examples. - Peter Munn, Feb 14 2021.
As such it could be useful for implementing multiplication, say, in Turing machines, with a "tape-like" unary-binary encoding of the prime factorization of n (A156552). However, such representation is not very useful if addition or subtraction is also needed.

Examples

			The top left {0..15} X {0..16} corner of the array:
   0,  1,  2,  3,  4,  5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15,
   1,  3,  5,  7,  9, 11,  13,  15,  17,  19,  21,  23,  25,  27,  29,  31,
   2,  5,  6, 11, 10, 13,  14,  23,  18,  21,  22,  27,  26,  29,  30,  47,
   3,  7, 11, 15, 19, 23,  27,  31,  35,  39,  43,  47,  51,  55,  59,  63,
   4,  9, 10, 19, 12, 21,  22,  39,  20,  25,  26,  43,  28,  45,  46,  79,
   5, 11, 13, 23, 21, 27,  29,  47,  37,  43,  45,  55,  53,  59,  61,  95,
   6, 13, 14, 27, 22, 29,  30,  55,  38,  45,  46,  59,  54,  61,  62, 111,
   7, 15, 23, 31, 39, 47,  55,  63,  71,  79,  87,  95, 103, 111, 119, 127,
   8, 17, 18, 35, 20, 37,  38,  71,  24,  41,  42,  75,  44,  77,  78, 143,
   9, 19, 21, 39, 25, 43,  45,  79,  41,  51,  53,  87,  57,  91,  93, 159,
  10, 21, 22, 43, 26, 45,  46,  87,  42,  53,  54,  91,  58,  93,  94, 175,
  11, 23, 27, 47, 43, 55,  59,  95,  75,  87,  91, 111, 107, 119, 123, 191,
  12, 25, 26, 51, 28, 53,  54, 103,  44,  57,  58, 107,  60, 109, 110, 207,
  13, 27, 29, 55, 45, 59,  61, 111,  77,  91,  93, 119, 109, 123, 125, 223,
  14, 29, 30, 59, 46, 61,  62, 119,  78,  93,  94, 123, 110, 125, 126, 239,
  15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255,
  16, 33, 34, 67, 36, 69,  70, 135,  40,  73,  74, 139,  76, 141, 142, 271,
...
From _Peter Munn_, Feb 24 2021: (Start)
We consider the case of n = 10, k = 41, following the procedure in the Feb 14 2021 comment.
First, write 10 and 41 in binary:
  10 = 1010_2
  41 = 101001_2
Add at least one leading zero to each number, equalizing number of zeros:
  0  0  1  0  1  0
  0  1  0  1  0  0  1
Align zeros, but separate ones:
  0     0  1     0  1  0
  |     |        |     |
  0  1  0     1  0     0  1
---------------------------
  0  1  0  1  1  0  1  0  1
Concatenating the ones, as shown above, we get 10110101_2 = 181.
So A(10, 41) = 181.
(End)
		

Crossrefs

Cf. A088698 (main diagonal).
Rows/columns 0-3: A001477, A005408, A341522, A004767. Row/column 7: A004771.
Cf. A341521 (the lower triangular section).

Programs

  • Mathematica
    Block[{nn = 12, a = {1}}, Do[AppendTo[a, If[EvenQ[i], Times @@ Map[Prime[PrimePi[#1] + 1]^#2 & @@ # &, FactorInteger[#]] &@ a[[(i/2) + 1]], 2 a[[((i - 1)/2) + 1]]]], {i, nn}]; Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &[a[[1 + n - k]]*a[[1 + k]] ], {n, 0, nn}, {k, n, 0, -1}]] // Flatten (* Michael De Vlieger, Feb 24 2021 *)
  • PARI
    up_to = 105;
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A341520sq(n,k) = A156552(A005940(1+n)*A005940(1+k));
    A341520list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0,oo, for(col=0,a, i++; if(i > #v, return(v)); v[i] = A341520sq(col,(a-(col))))); (v); };
    v341520 = A341520list(up_to);
    A341520(n) = v341520[1+n];

Formula

A(x, y) = A156552(A005940(1+x) * A005940(1+y)).
For all n>=0, A(0, n) = A(n, 0) = n.
For all x>=0, y>=0, A(x, y) = A(y, x).
For all x, y, z >= 0, A(x, A(y, z)) = A(A(x, y), z).
From Antti Karttunen, Feb 27 2022: (Start)
For all x, y >= 0, A(x, y) = A(A351961(x,y), A351962(x,y)).
For x >= 0, y > 0, A(x, y) = A351960(x, A(x, A297164(y))).
(End)
Previous Showing 21-30 of 115 results. Next