cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 115 results. Next

A098360 Multiplication table of the cube numbers read by antidiagonals.

Original entry on oeis.org

1, 8, 8, 27, 64, 27, 64, 216, 216, 64, 125, 512, 729, 512, 125, 216, 1000, 1728, 1728, 1000, 216, 343, 1728, 3375, 4096, 3375, 1728, 343, 512, 2744, 5832, 8000, 8000, 5832, 2744, 512, 729, 4096, 9261, 13824, 15625, 13824, 9261, 4096, 729, 1000, 5832, 13824
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004

Keywords

Examples

			1; 8,8; 27,64,27; 64,216,216,64; ...
		

Crossrefs

Row sums: A145216. - N. J. A. Sloane, May 31 2009

Programs

  • GAP
    Flat(List([2..11],m->List([1..m-1],i->i^3*(m-i)^3))); # Muniru A Asiru, Jun 27 2018
  • Maple
    seq(seq(i^3*(m-i)^3,i=1..m-1),m=2..10); # Robert Israel, Jun 27 2018
  • Mathematica
    With[{s = Range[10]^3}, Table[s[[#]] s[[j]] &[i - j + 1], {i, Length@s}, {j, i}]] // Flatten (* Michael De Vlieger, Jun 27 2018 *)

Formula

G.f. as rectangular array: [xy(1+4x+x^2)(1+4y+y^2)] / [(1-x)^4 * (1-y)^4 ]. - Ralf Stephan, Oct 27 2004, corrected by Robert Israel, Jun 27 2018
a(n) = A003991(n)^3.- Robert Israel, Jun 27 2018

Extensions

More terms from Ralf Stephan, Oct 27 2004
Offset corrected by Robert Israel, Jun 27 2018

A319840 Table read by antidiagonals: T(n, k) is the number of elements on the perimeter of an n X k matrix.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 4, 6, 6, 4, 5, 8, 8, 8, 5, 6, 10, 10, 10, 10, 6, 7, 12, 12, 12, 12, 12, 7, 8, 14, 14, 14, 14, 14, 14, 8, 9, 16, 16, 16, 16, 16, 16, 16, 9, 10, 18, 18, 18, 18, 18, 18, 18, 18, 10, 11, 20, 20, 20, 20, 20, 20, 20, 20, 20, 11, 12, 22, 22, 22
Offset: 1

Views

Author

Stefano Spezia, Sep 29 2018

Keywords

Comments

The table T(n, k) can be indifferently read by ascending or descending antidiagonals.

Examples

			The table T starts in row n=1 with columns k >= 1 as:
   1   2   3   4   5   6   7   8   9  10 ...
   2   4   6   8  10  12  14  16  18  20 ...
   3   6   8  10  12  14  16  18  20  22 ...
   4   8  10  12  14  16  18  20  22  24 ...
   5  10  12  14  16  18  20  22  24  26 ...
   6  12  14  16  18  20  22  24  26  28 ...
   7  14  16  18  20  22  24  26  28  30 ...
   8  16  18  20  22  24  26  28  30  32 ...
   9  18  20  22  24  26  28  30  32  34 ...
  10  20  22  24  26  28  30  32  34  36 ...
  ...
The triangle X(n, k) begins
  n\k|   1   2   3   4   5   6   7   8   9  10
  ---+----------------------------------------
   1 |   1
   2 |   2   2
   3 |   3   4   3
   4 |   4   6   6   4
   5 |   5   8   8   8   5
   6 |   6  10  10  10  10   6
   7 |   7  12  12  12  12  12   7
   8 |   8  14  14  14  14  14  14   8
   9 |   9  16  16  16  16  16  16  16   9
  10 |  10  18  18  18  18  18  18  18  18  10
  ...
		

Crossrefs

Cf. A000027 (1st column/right diagonal of the triangle or 1st row/column of the table), A005843 (2nd row/column of the table, or 2nd column of the triangle), A008574 (main diagonal of the table), A005893 (row sum of the triangle).
Cf. A003991 (the number of elements in an n X k matrix).

Programs

  • Magma
    [[k lt 3 or n+1-k lt 3 select (n+1-k)*k else 2*n-2: k in [1..n]]: n in [1..10]]; // triangle output
    
  • Maple
    a := (n, k) -> (n+1-k)*k-(n-1-k)*(k-2)*(limit(Heaviside(min(n+1-k, k)-3+x), x = 0, right)): seq(seq(a(n, k), k = 1 .. n), n = 1 .. 20)
  • Mathematica
    Flatten[Table[(n + 1 - k) k-(n-1-k)*(k-2)Limit[HeavisideTheta[Min[n+1-k,k]-3+x], x->0, Direction->"FromAbove"  ],{n, 20}, {k, n}]] (* or *)
    f[n_] := Table[SeriesCoefficient[(x y - x^3 y^3)/((-1 + x)^2 (-1 + y)^2), {x, 0, i + 1 - j}, {y, 0, j}], {i, n, n}, {j, 1, n}]; Flatten[Array[f,20]]
  • PARI
    T(n, k) = if ((n+1-k<3) || (k<3), (n+1-k)*k, 2*n-2);
    tabl(nn) = for(i=1, nn, for(j=1, i, print1(T(i, j), ", ")); print);
    tabl(20) \\ triangle output

Formula

T(n, k) = n*k - (n - 2)*(k - 2)*H(min(n, k) - 3), where H(x) is the Heaviside step function, taking H(0) = 1.
G.f. as rectangular array: (x*y - x^3*y^3)/((-1 + x)^2*(-1 + y)^2).
X(n, k) = A131821(n, k)*A318274(n - 1, k)*A154325(n - 1, k). - Franck Maminirina Ramaharo, Nov 18 2018

A350066 Symmetric square array A(n,k) = A122111(A122111(n) * A122111(k)), n >= 1, k >= 1, read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 5, 5, 4, 5, 6, 7, 6, 5, 6, 7, 10, 10, 7, 6, 7, 10, 11, 9, 11, 10, 7, 8, 11, 14, 14, 14, 14, 11, 8, 9, 12, 13, 15, 13, 15, 13, 12, 9, 10, 15, 20, 22, 22, 22, 22, 20, 15, 10, 11, 14, 21, 18, 17, 21, 17, 18, 21, 14, 11, 12, 13, 22, 25, 28, 26, 26, 28, 25, 22, 13, 12, 13, 20, 17, 21, 33, 30, 19, 30, 33, 21, 17, 20, 13
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2021

Keywords

Comments

A122111 is a self-inverse permutation, so this array represents a binary operation A(.,.) over the positive integers that is isomorphic to multiplication. Its primes are the positive powers of 2 (as defined by standard multiplication): 2, 4, 8, 16, 32, ... . The positive powers of 2, as defined by A(.,.), are the prime numbers as we usually understand them: 2, 3, 5, 7, 11, ... . - Peter Munn, Aug 04 2022

Examples

			The top left 15 X 15 corner of the array:
   1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11,  12, 13, 14,  15,
   2,  3,  5,  6,  7, 10, 11, 12, 15, 14, 13,  20, 17, 22,  21,
   3,  5,  7, 10, 11, 14, 13, 20, 21, 22, 17,  28, 19, 26,  33,
   4,  6, 10,  9, 14, 15, 22, 18, 25, 21, 26,  30, 34, 33,  35,
   5,  7, 11, 14, 13, 22, 17, 28, 33, 26, 19,  44, 23, 34,  39,
   6, 10, 14, 15, 22, 21, 26, 30, 35, 33, 34,  42, 38, 39,  55,
   7, 11, 13, 22, 17, 26, 19, 44, 39, 34, 23,  52, 29, 38,  51,
   8, 12, 20, 18, 28, 30, 44, 27, 50, 42, 52,  45, 68, 66,  70,
   9, 15, 21, 25, 33, 35, 39, 50, 49, 55, 51,  70, 57, 65,  77,
  10, 14, 22, 21, 26, 33, 34, 42, 55, 39, 38,  66, 46, 51,  65,
  11, 13, 17, 26, 19, 34, 23, 52, 51, 38, 29,  68, 31, 46,  57,
  12, 20, 28, 30, 44, 42, 52, 45, 70, 66, 68,  63, 76, 78, 110,
  13, 17, 19, 34, 23, 38, 29, 68, 57, 46, 31,  76, 37, 58,  69,
  14, 22, 26, 33, 34, 39, 38, 66, 65, 51, 46,  78, 58, 57,  85,
  15, 21, 33, 35, 39, 55, 51, 70, 77, 65, 57, 110, 69, 85,  91,
		

Crossrefs

Cf. A122111, A297002 (main diagonal), A253550 (after its initial term, gives row 2 / column 2 from the second term onward).
See the formula section for the relationships with A003961, A061142.
Cf. also A003991, A129595, A331590.

Programs

  • PARI
    up_to = 105;
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    A350066sq(n,k) = A122111(A122111(n)*A122111(k));
    A350066list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A350066sq(col,(a-(col-1))))); (v); };
    v350066 = A350066list(up_to);
    A350066(n) = v350066[n]; \\ Antti Karttunen, Dec 13 2021

Formula

A(n, A061142(n)) = A003961(n). - Peter Munn, Aug 04 2022

A081113 Number of paths of length n-1 a king can take from one side of an n X n chessboard to the opposite side.

Original entry on oeis.org

1, 4, 17, 68, 259, 950, 3387, 11814, 40503, 136946, 457795, 1515926, 4979777, 16246924, 52694573, 170028792, 546148863, 1747255194, 5569898331, 17698806798, 56076828573, 177208108824, 558658899825, 1757365514652
Offset: 1

Views

Author

David Scambler, Apr 16 2003

Keywords

Comments

a(n) = number of sequences (a_1,a_2,...,a_n) with 1<=a_i<=n for all i and |a_(i+1)-a_(i)|<=1 for 1<=i<=n-1. For n=2 the sequences are 11, 12, 21, 22. - David Callan, Oct 24 2004
Simon Plouffe proposes the ordinary generating function A(x) (for offset zero) in the implicit form 3-10*x+12*x^2+(-4+30*x+54*x^3-72*x^2)*A(x)+(81*x^4+54*x^2+1-12*x-108*x^3)*A(x)^2 = 0 which delivers at least the first 200 terms (i.e., as far as tested) correctly. - David Scambler, R. J. Mathar, Jan 06 2011

Examples

			For n=2 the 4 paths are (0,0)->(0,1); (0,0)->(1,1); (1,0)->(0,1); (1,0)->(1,1).
		

Crossrefs

Cf. A005773 (paths which begin at a corner), diagonal of A296449.

Programs

  • Maple
    A026300 := proc(n,k) add( binomial(n,2*i+n-k)*(binomial(2*i+n-k,i) -binomial(2*i+n-k,i-1)), i=0..floor(k/2)) ; end proc:
    A081113 := proc(n) add(k*(n-k+1)*A026300(n-1,k-1),k=1..n) ; end proc:
    seq(A081113(n),n=1..20) ;
    # R. J. Mathar, Jun 09 2010
  • Mathematica
    t[n_, k_] := Sum[ Binomial[n, 2i + n - k] (Binomial[2i + n - k, i] - Binomial[2i + n - k, i - 1]), {i, 0, Floor[k/2]}] (* from A026300 *); f[n_] := Sum[ k(n - k + 1)t[n - 1, k - 1], {k, n}]; Array[f, 24]

Formula

a(n) = Sum_{k=1..n} k*(n-k+1)*M(n-1, k-1) where k*(n-k+1) is the triangular view of A003991 and M() is the Motzkin triangle A026300.
Conjecture: g.f.(x)=z*A064808(z), where z=x*A001006(x) and A...(x) are the corresponding generating functions. - R. J. Mathar, Jul 07 2009
Conjecture from WolframAlpha (verified for 1<=n<=180): (n+3)*a(n+4) = 27*n*a(n) +27*a(n+1) -9*(2*n+5)*a(n+2) +(8*n+21)*a(n+3). - Alexander R. Povolotsky, Jan 04 2011
Shorter recurrence: (n-1)*(2*n-7)*a(n) = (10*n^2-39*n+23)*a(n-1) - 3*(2*n^2-n-9)*a(n-2) - 9*(n-3)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 28 2012
a(n) ~ 3^(n-1)*n*(1-4/(sqrt(3*Pi*n))). - Vaclav Kotesovec, Oct 28 2012
a(n) = (n+2)*3^(n-2)+2*Sum_{k=0..n-3} (n-k-2)*3^(n-k-3)*A001006(k). [Yaqubi Corollary 2.8] - R. J. Mathar, Dec 13 2017

A098359 Multiplication table of the square numbers read by antidiagonals.

Original entry on oeis.org

1, 4, 4, 9, 16, 9, 16, 36, 36, 16, 25, 64, 81, 64, 25, 36, 100, 144, 144, 100, 36, 49, 144, 225, 256, 225, 144, 49, 64, 196, 324, 400, 400, 324, 196, 64, 81, 256, 441, 576, 625, 576, 441, 256, 81, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 121, 400, 729, 1024, 1225, 1296, 1225, 1024, 729, 400, 121
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004

Keywords

Comments

sum_{k=0..2n-2} (-1)^k*a(A000124(2n-2)+k-1) = n. See A003991. - Charlie Marion, Apr 22 2013

Examples

			Square array A(n,k) begins:
   1,   4,   9,  16,   25,   36,   49, ...
   4,  16,  36,  64,  100,  144,  196, ...
   9,  36,  81, 144,  225,  324,  441, ...
  16,  64, 144, 256,  400,  576,  784, ...
  25, 100, 225, 400,  625,  900, 1225, ...
  36, 144, 324, 576,  900, 1296, 1764, ...
  49, 196, 441, 784, 1225, 1764, 2401, ...
		

Crossrefs

Antidiagonal sums give A033455.
Main diagonal gives A000583.

Programs

  • Maple
    A:= (n,k)-> (n*k)^2:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, May 19 2025

Formula

A(n,k) = n^2*k^2.
G.f.: [xy(1+x)(1+y)] / [(1-x)^3 * (1-y)^3 ]. - Ralf Stephan, Oct 27 2004
Sum_{j=1..n} A(j,1+n-j)*j = A213547(n). - Alois P. Heinz, May 19 2025

Extensions

Offset corrected by Alois P. Heinz, May 19 2025

A098364 Multiplication table of the digits of the square root of 2 read by antidiagonals.

Original entry on oeis.org

1, 4, 4, 1, 16, 1, 4, 4, 4, 4, 2, 16, 1, 16, 2, 1, 8, 4, 4, 8, 1, 3, 4, 2, 16, 2, 4, 3, 5, 12, 1, 8, 8, 1, 12, 5, 6, 20, 3, 4, 4, 4, 3, 20, 6, 2, 24, 5, 12, 2, 2, 12, 5, 24, 2, 3, 8, 6, 20, 6, 1, 6, 20, 6, 8, 3, 7, 12, 2, 24, 10, 3, 3, 10, 24, 2, 12, 7, 3, 28, 3, 8, 12, 5, 9, 5, 12, 8, 3, 28, 3
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004

Keywords

Examples

			Triangle begins:
  1;
  4,4;
  1,16,1;
  4,4,4,4;
  ...
Array begins:
  1  4 1  4 2 ...
  4 16 4 16 8 ...
  1  4 1  4 2 ...
  4 16 4 16 8 ...
  2  8 2  8 4 ...
  ...
		

Crossrefs

Programs

  • PARI
    sqrt2(nn) = {my(r=0, x=2, list = List(), d); for(digits=1, nn, d=0; while((20*r+d)*d <= x, d++); d--; listput(list, d); x=100*(x-(20*r+d)*d); r=10*r+d;); Vec(list);} \\ A002193
    lista(nn) = {my(dd = sqrt2(nn)); for (n=1, nn, for (k=1, n, print1(dd[k]*dd[n-k+1], ", ")));} \\ Michel Marcus, Nov 11 2021

Formula

T(n,k) = A003991(A002193(n), A002193(k)). - Michel Marcus, Nov 03 2021

Extensions

Offset changed to 1 and a(34)=1 inserted by Georg Fischer, Nov 02 2021

A158823 Triangle read by rows: matrix product A004736 * A158821.

Original entry on oeis.org

1, 3, 1, 6, 2, 2, 10, 3, 4, 3, 15, 4, 6, 6, 4, 21, 5, 8, 9, 8, 5, 28, 6, 10, 12, 12, 10, 6, 36, 7, 12, 15, 16, 15, 12, 7, 45, 8, 14, 18, 20, 20, 18, 14, 8, 55, 9, 16, 21, 24, 25, 24, 21, 16, 9, 66, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 78, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11
Offset: 1

Views

Author

Keywords

Examples

			First few rows of the triangle =
   1;
   3,  1;
   6,  2,  2;
  10,  3,  4,  3;
  15,  4,  6,  6,  4;
  21,  5,  8,  9,  8,  5;
  28,  6, 10, 12, 12, 10,  6;
  36,  7, 12, 15, 16, 15, 12,  7;
  45,  8, 14, 18, 20, 20, 18, 14,  8;
  55,  9, 16, 21, 24, 25, 24, 21, 16,  9;
  66, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10;
  78, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11;
  91, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12;
		

Crossrefs

Cf. A000292 (row sums), A003991, A004736, A158821.

Programs

  • Magma
    [k eq 1 select Binomial(n+1, 2) else (n-k+1)*(k-1): k in [1..n], n in [1..15]]; // G. C. Greubel, Apr 01 2021
    
  • Maple
    A158823 := proc(n,m) add( A004736(n,k)*A158821(k-1,m-1),k=1..n) ; end: seq(seq(A158823(n,m),m=1..n),n=1..8) ; # R. J. Mathar, Oct 22 2009
  • Mathematica
    Table[If[k==1, Binomial[n+1, 2], (n-k+1)*(k-1)], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
  • Sage
    flatten([[binomial(n+1, 2) if k==1 else (n-k+1)*(k-1) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Apr 01 2021

Formula

Sum_{k=1..n} T(n, k) = A000292(n).
T(n, k) = Sum_{j=k..n} A004736(n, j)*A158821(j-1, k-1).
From R. J. Mathar, Mar 03 2011: (Start)
T(n, k) = (n-k+1)*(k-1), k>1.
T(n, 1) = A000217(n). (End)

Extensions

Corrected A-number in a formula - R. J. Mathar, Oct 30 2009

A173997 Irregular triangle by columns derived from (1, 2, 3, ...) * (1, 2, 3, ...).

Original entry on oeis.org

1, 2, 3, 2, 4, 4, 5, 6, 3, 6, 8, 6, 7, 10, 9, 4, 8, 12, 12, 8, 9, 14, 15, 12, 5, 10, 16, 18, 16, 10, 11, 18, 21, 20, 15, 6, 12, 20, 24, 24, 20, 12, 13, 22, 27, 28, 25, 18, 7, 14, 24, 30, 32, 30, 24, 14, 15, 26, 33, 36, 35, 30, 21, 8, 16, 28, 36, 40, 40, 36, 28, 16
Offset: 1

Views

Author

Gary W. Adamson, Mar 05 2010

Keywords

Comments

Given a (1, 2, 3, ...) * (1, 2, 3, ...) multiplication table; leftmost column of the triangle = (1, 2, 3, ...). Then shift down each successive column of the array twice to get this irregular triangle.

Examples

			Given:
  1,  2,  3,  4,  5, ...
  2,  4,  6,  8, 10, ...
  3,  6,  9, 12, 15, ...
  4,  8, 12, 16, 20, ...
  ...
After the shift twice operation, we obtain:
   1;
   2;
   3,  2;
   4,  4;
   5,  6,  3;
   6,  8,  6;
   7, 10,  9,  4;
   8, 12, 12,  8;
   9, 14, 15, 12,  5;
  10, 16, 18, 16, 10;
  11, 18, 21, 20, 15,  6;
  12, 20, 24, 24, 20, 12;
  ...
		

Crossrefs

Cf. A003991, A006918 (row sums).

Programs

  • Mathematica
    Flatten[Table[k(2-2k+n),{n,16},{k,Floor[(n+1)/2]}]] (* Stefano Spezia, Apr 19 2022 *)

Formula

T(n, k) = k*(2 - 2*k + n), with 1 <= k <= floor((n + 1)/2). - Stefano Spezia, Apr 19 2022

A185904 Multiplication table for the tetrahedral numbers (A000292), by antidiagonals.

Original entry on oeis.org

1, 4, 4, 10, 16, 10, 20, 40, 40, 20, 35, 80, 100, 80, 35, 56, 140, 200, 200, 140, 56, 84, 224, 350, 400, 350, 224, 84, 120, 336, 560, 700, 700, 560, 336, 120, 165, 480, 840, 1120, 1225, 1120, 840, 480, 165, 220, 660, 1200, 1680, 1960, 1960, 1680, 1200, 660, 220, 286, 880, 1650, 2400, 2940, 3136, 2940, 2400, 1650, 880, 286, 364, 1144, 2200, 3300, 4200, 4704, 4704, 4200, 3300, 2200, 1144, 364, 455, 1456, 2860, 4400, 5775, 6720, 7056, 6720, 5775, 4400, 2860, 1456, 455, 560, 1820, 3640, 5720, 7700, 9240, 10080, 10080, 9240, 7700, 5720, 3640, 1820, 560
Offset: 1

Views

Author

Clark Kimberling, Feb 06 2011

Keywords

Comments

A member of the accumulation chain ... < A185906 < A000007 < A003991 < A098358 < A185904 < A185905 < ... (See A144112 for the definition of accumulation array.)

Examples

			Northwest corner:
   1,  4,  10,  20,  35
   4, 16,  40,  80, 140
  10, 40, 100, 200, 350
  20, 80, 200, 400, 700
		

Crossrefs

Row 1 = Column 1 = A000292.

Programs

  • Mathematica
    (* This program generates A098358 and its accumulation array, A185904. *)
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A098358 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    FullSimplify[s[n,k]]  (* formula for A185904 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A185904 *)
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    T[n_, k_] := Binomial[k + 2, 3]*Binomial[n + 2, 3]; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 22 2017 *)

Formula

T(n,k) = binomial(k+2,3)*binomial(n+2,3), k >= 1, n >= 1.

A185905 Rectangular array binomial(k+3,4)*binomial(n+3,4), by antidiagonals.

Original entry on oeis.org

1, 5, 5, 15, 25, 15, 35, 75, 75, 35, 70, 175, 225, 175, 70, 126, 350, 525, 525, 350, 126, 210, 630, 1050, 1225, 1050, 630, 210, 330, 1050, 1890, 2450, 2450, 1890, 1050, 330, 495, 1650, 3150, 4410, 4900, 4410, 3150, 1650, 495, 715, 2475, 4950, 7350, 8820, 8820, 7350, 4950, 2475, 715, 1001, 3575, 7425, 11550
Offset: 1

Views

Author

Clark Kimberling, Feb 06 2011

Keywords

Comments

A member of the accumulation chain ... < A185906 < A000007 < A000012 < A003991 < A098358 < A185904 < A185905 < ... (See A144112 for the definition of accumulation array.)

Examples

			Northwest corner:
   1,    5,   15,   35,   70
   5,   25,   75,  175,  350
  15,   75,  225,  525, 1050
  35,  175,  425, 1225, 2450
		

Crossrefs

Cf. A144112.
Row 1 = Column 1 = A000332.

Programs

  • Mathematica
    a[n_, k_] := Binomial[k + 3, 4]*Binomial[n + 3, 4]; Table[a[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 22 2017 *)

Formula

T(n,k) = binomial(k+3,4)*binomial(n+3,4), k >= 1, n >= 1.
Previous Showing 51-60 of 115 results. Next