cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A226705 G.f.: 1 / (1 + 12*x*G(x)^4 - 16*x*G^5) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.

Original entry on oeis.org

1, 4, 48, 600, 7856, 105684, 1447392, 20075416, 281086416, 3964453368, 56240518128, 801624722232, 11470976280960, 164691196943212, 2371222443727584, 34224696393237360, 495036708728067088, 7173892793100898728, 104135761805147016096, 1513892435551302963792
Offset: 0

Views

Author

Paul D. Hanna, Jun 15 2013

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 48*x^2 + 600*x^3 + 7856*x^4 + 105684*x^5 +...
A related series is G(x) = 1 + x*G(x)^6, where
G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +...
G(x)^4 = 1 + 4*x + 30*x^2 + 280*x^3 + 2925*x^4 + 32736*x^5 +...
G(x)^5 = 1 + 5*x + 40*x^2 + 385*x^3 + 4095*x^4 + 46376*x^5 +...
such that A(x) = 1/(1 + 12*x*G(x)^4 - 16*x*G^5).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3*n+2*k,n-k]*Binomial[3*n-2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 16 2013 *)
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^6+x*O(x^n)); polcoeff(1/(1+12*x*G^4-16*x*G^5), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^6+x*O(x^n)); polcoeff(1/(1-4*x*G^4-16*x^2*G^10), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, n-k)*binomial(6*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(3*n +2*k, n-k)*binomial(3*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(6*n +2*k, n-k)*binomial(-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(2*k, n-k) * C(6*n-2*k, k).
a(n) = Sum_{k=0..n} C(n+2*k, n-k) * C(5*n-2*k, k).
a(n) = Sum_{k=0..n} C(2*n+2*k, n-k) * C(4*n-2*k, k).
a(n) = Sum_{k=0..n} C(3*n+2*k, n-k) * C(3*n-2*k, k).
a(n) = Sum_{k=0..n} C(4*n+2*k, n-k) * C(2*n-2*k, k).
a(n) = Sum_{k=0..n} C(5*n+2*k, n-k) * C(n-2*k, k).
a(n) = Sum_{k=0..n} C(6*n+2*k, n-k) * C(-2*k, k).
Self-convolution of A226706.
G.f.: 1 / (1 - 4*x*G(x)^4 - 16*x^2*G(x)^10) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
a(n) ~ 2^(6*n-2)*3^(6*n+3/2)/(5^(5*n+1/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 16 2013
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+2*x) * (1-x)^(5*n+1)).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(6*n+1,k).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(5*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(6*n+1,k) * binomial(6*n-k,n-k).
G.f.: G(x)^2/((-2+3*G(x)) * (6-5*G(x))) where G(x) = 1+x*G(x)^6 is the g.f. of A002295. (End)
G.f.: B(x)^2/(1 + 4*(B(x)-1)/3), where B(x) is the g.f. of A004355. - Seiichi Manyama, Aug 15 2025

A346580 a(n) = (1/(6*n)) * Sum_{d|n} mu(n/d) * binomial(6*d,d).

Original entry on oeis.org

1, 5, 45, 440, 4750, 54081, 642341, 7861216, 98480286, 1256564750, 16273981757, 213378921432, 2826867619108, 37782552518473, 508840821825750, 6898459208449920, 94070535317459017, 1289430373107917718, 17755914760643605781, 245518560759177014000, 3407586451859019939012
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 24 2021

Keywords

Comments

Inverse Euler transform of A002295.
Moebius transform of A261499.

Crossrefs

Programs

  • Mathematica
    Table[(1/(6 n)) Sum[MoebiusMu[n/d] Binomial[6 d, d], {d, Divisors[n]}], {n, 21}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(6*d,d))/(6*n); \\ Michel Marcus, Jul 24 2021

A090969 a(n) = 1/Integral_{x=0..1} (x^5 - x^6)^n.

Original entry on oeis.org

1, 42, 858, 15504, 265650, 4417686, 72068304, 1160068104, 18490100706, 292486494300, 4599035681526, 71963547329856, 1121519754006288, 17419158268943970, 269767427275060200, 4167406330765934256
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)excite.com), Feb 29 2004

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(6*n+1)/(Factorial(n)*Factorial(5*n)): n in [0..20]]; // G. C. Greubel, Feb 03 2019
    
  • Maple
    seq(factorial(6*n+1)/(factorial(n)*factorial(5*n)), n = 0 .. 16); # Emeric Deutsch, Jun 29 2009
  • Mathematica
    Table[1/Beta[5*n+1, n+1], {n,0,20}] (* G. C. Greubel, Feb 03 2019 *)
  • PARI
    vector(20, n, n--; (6*n+1)!/(n!*(5*n)!)) \\ G. C. Greubel, Feb 03 2019
    
  • Sage
    [1/beta(5*n+1,n+1) for n in range(20)] # G. C. Greubel, Feb 03 2019

Formula

a(n) = A016921(n)*A004355(n). - R. J. Mathar, Jun 21 2009
a(n) = 1/B(5*n+1,n+1) = (6*n+1)!/(n! * (5*n)!), where B(p,q) is Euler's beta function (basically identical with R. J. Mathar's comment). - Emeric Deutsch, Jun 29 2009
a(n) ~ 2^(6*n+1) * 3^(6*n+3/2) * sqrt(n) / (sqrt(Pi) * 5^(5*n+1/2)). - Vaclav Kotesovec, Aug 15 2017

Extensions

Extended by Emeric Deutsch, Jun 29 2009

A023852 Sum of exponents in prime-power factorization of binomial(6n, n).

Original entry on oeis.org

0, 2, 3, 6, 5, 7, 9, 9, 8, 10, 10, 14, 13, 12, 15, 16, 15, 16, 16, 19, 16, 18, 22, 24, 22, 23, 21, 23, 22, 22, 24, 25, 25, 24, 25, 28, 25, 27, 28, 28, 26, 31, 30, 38, 36, 33, 38, 38, 37, 35, 36, 38, 33, 33, 37, 38, 36, 39, 37, 43, 39, 41, 43, 46, 42, 40, 41, 45, 46, 43, 47, 46, 45, 46, 47, 49, 47, 45
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):a:=proc(n) if n=0 then 0 else bigomega(binomial(6*n,n)) fi end: seq(a(n), n=0..77); # Zerinvary Lajos, Apr 11 2008
  • Mathematica
    Table[PrimeOmega[Binomial[6 n, n]], {n, 0, 77}] (* Ivan Neretin, Nov 09 2017 *)
  • PARI
    a(n) = bigomega(binomial(6*n, n)); \\ Michel Marcus, Nov 10 2017

Formula

a(n) = A001222(A004355(n)). - Michel Marcus, Nov 10 2017
a(n) = A022559(6*n) - A022559(5*n) - A022559(n). - Amiram Eldar, Jun 11 2025

Extensions

a(0)=0 inserted by Amiram Eldar, Jun 11 2025

A169959 a(n) = binomial(10*n, n).

Original entry on oeis.org

1, 10, 190, 4060, 91390, 2118760, 50063860, 1198774720, 28987537150, 706252528630, 17310309456440, 426342151127100, 10542859559688820, 261594860525768000, 6509613950241656640, 162392216278033616560, 4059949873964357469950, 101696990867999141755140
Offset: 0

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Crossrefs

binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).

Programs

Formula

a(n) = C(10*n-1, n-1)*C(100*n^2, 2)/(3*n*C(10*n+1, 3)), n > 0. - Gary Detlefs, Jan 02 2014
From Peter Bala, Feb 21 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 9*A(x))^9 + (10^10)*x*A(x)^10 = 0.
Sum_{n >= 1} a(n)*( x*(9*x + 10)^9/(10^10*(1 + x)^10) )^n = x. (End)

A169960 a(n) = binomial(11*n,n).

Original entry on oeis.org

1, 11, 231, 5456, 135751, 3478761, 90858768, 2404808340, 64276915527, 1731030945644, 46897636623981, 1276749965026536, 34898565177533200, 957150015393611193, 26327386978706181060, 725971390105457325456, 20062118235172477959495, 555476984964439251664995
Offset: 0

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Crossrefs

binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).

Programs

Formula

a(n) = C(11*n-1,n-1)*C(121*n^2,2)/(3*n*C(11*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
From Peter Bala, Feb 21 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 10*A(x))^10 + (11^11)*x*A(x)^11 = 0.
Sum_{n >= 1} a(n)*( x*(10*x + 11)^10/(11^11*(1 + x)^11) )^n = x. (End)

A385497 a(n) = Sum_{k=0..n} binomial(6*n+1,k).

Original entry on oeis.org

1, 8, 92, 1160, 15276, 206368, 2835200, 39419864, 553000876, 7811733392, 110962066532, 1583318009160, 22677731944032, 325849065291056, 4694837606889424, 67803714186207280, 981265566082447276, 14227018304102548368, 206608052310739404392, 3004777578508008253808
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(6*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 18 2025
  • Mathematica
    Table[Sum[Binomial[6*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 18 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(6*n+1, k));
    

Formula

a(n) = [x^n] (1+x)^(6*n+1)/(1-x).
a(n) = [x^n] 1/((1-x)^(5*n+1) * (1-2*x)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(6*n+1,k) * binomial(6*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(6*n-k,n-k).
G.f.: 1/(1 - 4*x*g^4*(3-g)) where g = 1+x*g^6 is the g.f. of A002295.
G.f.: g^2/((2-g) * (6-5*g)) where g = 1+x*g^6 is the g.f. of A002295.
G.f.: B(x)^2/(1 + 2*(B(x)-1)/3), where B(x) is the g.f. of A004355.
a(n) ~ 2^(6*n-1) * 3^(6*n + 3/2) / (sqrt(Pi*n) * 5^(5*n + 1/2)). - Vaclav Kotesovec, Aug 19 2025
D-finite with recurrence +5*n*(5*n-3) *(25275337086729240289198339046875*n +471647298106881091699147254457046) *(5*n-1)*(5*n-4)*(5*n-2)*a(n) +(78985428396028875903744809521484375*n^6 -559942234844855804767211877804090453801*n^5 +3587636672285250929619857349305543417315*n^4 -10153151347942687598200945831585305558855*n^3 +14794114656715293872778407292185015920550*n^2 -10846691360081598422810600143797325763664*n +3179147242764665659301361496311050364480)*a(n-1) +40*(916451705547792050816664342989042382392*n^6 -15754440652132350078674083937326518806004*n^5 +117614110896134855700514819789186651267682*n^4 -471111363407608954402735569277858473721059*n^3 +1053743992048348087929158710510276422876431*n^2 -1242809524683997363700671579060256757555078*n +603414490131980309336751304501155726403152) *a(n-2) +3072*(-950768355029313182341332806167821761828*n^6 +17097100921628721474237101055297828968024*n^5 -128090998271831890487248970509140383514230*n^4 +509544263618626898681417576914870842148685*n^3 -1132270964907780344616429736070172799129247*n^2 +1330655887974191637410201798934319046990726*n -645481184978535641217111809931780144149880) *a(n-3) +884736*(3*n-11) *(6*n-17) *(61801507754400081418308631750717123*n -123657551673181017806623428016627104) *(6*n-19)*(3*n-10)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Aug 26 2025

A380607 a(0) = 1, a(n) = 5*binomial(6*(n-1),n-1), for n > 0.

Original entry on oeis.org

1, 5, 30, 330, 4080, 53130, 712530, 9738960, 134891640, 1886744970, 26589681300, 376970137830, 5370413979840, 76816421507280, 1102478371452150, 15868672192650600, 228978369822304080, 3311260421942706570
Offset: 0

Views

Author

Karol A. Penson, Jan 28 2025

Keywords

Crossrefs

Cf. A004355.

Programs

  • Mathematica
    CoefficientList[Series[5*z*HypergeometricPFQ[{1/6, 1/3, 1/2, 2/3, 5/6}, {1/5, 2/5, 3/5, 4/5}, (6^6*z)/5^5] + 1,{z,0,17}],z] (* Stefano Spezia, Jan 28 2025 *)
  • PARI
    a(n) = 0^n+binomial(6*(n-1),n-1)*5 \\ Thomas Scheuerle, Jan 29 2025

Formula

a(n) = 5*A004355(n-1), for n>=1.
G.f.: h(z) = 5*z*hypergeom([1/6, 1/3, 1/2, 2/3, 5/6], [1/5, 2/5, 3/5, 4/5], (6^6*z)/5^5) + 1
satisfies: 15625*z^6 - 75000*z^5 + 140625*z^4 - 125000*z^3 + 46875*z^2 + 46656*z - 3125 + (75000*z^5 - 281250*z^4 + 375000*z^3 - 187500*z^2 - 279936*z + 18750)*h(z) + (140625*z^4 - 375000*z^3 + 281250*z^2 + 699840*z - 46875)*h(z)^2 + (125000*z^3 - 187500*z^2 - 933120*z + 62500)*h(z)^3 + (46875*z^2 + 699840*z - 46875)*h(z)^4 + (-279936*z + 18750)*h(z)^5 + (46656*z - 3125)*h(z)^6 = 0.
a(n) = Integral_{x=0..sup} x^n*W(x), where sup = 6^6/5^5, with W(x) = (5^10)*sqrt(15)/((6^12)*sqrt(Pi) )*MeijerG([[],[-1,-9/5,-8/5,-7/5,-6/5]],[[-11/6,-5/3,-3/2,-4/3,-7/6],[]],x/(6^6/5^5)), n>0. In W(x) MeijerG is the Meijer G-function in Maple notation, which can be represented as the sum of five generalized hypergeometric functions of type 5F4. This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem on x = (0, sup). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is U-shaped, is singular at x = 0, with singularity x^(-1/6), and is singular at x = sup. W(x) has a minimum at x around x=11.
Previous Showing 11-18 of 18 results.