0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 3, 2, 3, 1, 1, 1, 3, 1, 2, 3, 1, 1, 2, 3, 1, 1, 4, 2, 4, 1, 1, 1, 4, 1, 2, 4, 1, 1, 2, 4, 1, 1, 1, 2, 4, 1, 2, 2, 4, 1, 1, 3, 4, 1, 2, 5, 1, 1, 2, 5, 1, 1, 1, 2, 5, 1, 2, 2, 5, 1, 1, 3, 5, 1, 1, 2, 2
Offset: 1
Terms in the first rows n of this sequence, followed by the corresponding primorials whose product = A004394(n):
n T(n,k) A002110(T(n,k)) A004394(n)
-----------------------------------------------
1: 0; 1 = 1
2: 1; 2 = 2
3: 1, 1; 2 * 2 = 4
4: 2; 6 = 6
5: 1, 2; 2 * 6 = 12
6: 1, 1, 2; 2 * 2 * 6 = 24
7: 2, 2; 6 * 6 = 36
8: 1, 1, 1, 2; 2 * 2 * 2 * 6 = 48
9: 1, 3; 2 * 30 = 60
10: 1, 1, 3; 2 * 2 * 30 = 120
11: 2, 3; 6 * 30 = 180
12: 1, 1, 1, 3; 2 * 2 * 2 * 30 = 240
13: 1, 2, 3; 2 * 6 * 30 = 360
14: 1, 1, 2, 3; 2 * 2 * 6 * 30 = 720
15: 1, 1, 4; 2 * 2 * 210 = 840
...
Row 6 = {1,1,2} since A002110(1)*A002110(1)*A002110(2) = 2*2*6 = 24 and A004394(6) = 24. The conjugate of {1,1,2} = {3,1} and 24 = 2^3 * 3^1.
Row 10 = {1,1,3} since A002110(1)*A002110(1)*A002110(3) = 2*2*30 = 120 and A004394(10) = 120. The conjugate of {1,1,3} = {3,1,1} and 120 = 2^3 * 3^1 * 5^1.
Comments