A063521
a(n) = n*(7*n^2-4)/3.
Original entry on oeis.org
0, 1, 16, 59, 144, 285, 496, 791, 1184, 1689, 2320, 3091, 4016, 5109, 6384, 7855, 9536, 11441, 13584, 15979, 18640, 21581, 24816, 28359, 32224, 36425, 40976, 45891, 51184, 56869, 62960, 69471, 76416, 83809, 91664, 99995, 108816, 118141, 127984, 138359, 149280, 160761
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
A063521:=n->n*(7*n^2-4)/3; seq(A063521(k), k=0..100); # Wesley Ivan Hurt, Oct 24 2013
-
lst={};Do[AppendTo[lst, n*(7*n^2-4)/3], {n, 1, 6!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 02 2008 *)
CoefficientList[Series[x*(1+12*x+x^2)/(1-x)^4, {x, 0, 50}], x] (* G. C. Greubel, Sep 01 2017 *)
-
a(n) = { n*(7*n^2 - 4)/3 } \\ Harry J. Smith, Aug 25 2009
A004126
a(n) = n*(7*n^2 - 1)/6.
Original entry on oeis.org
0, 1, 9, 31, 74, 145, 251, 399, 596, 849, 1165, 1551, 2014, 2561, 3199, 3935, 4776, 5729, 6801, 7999, 9330, 10801, 12419, 14191, 16124, 18225, 20501, 22959, 25606, 28449, 31495, 34751, 38224, 41921, 45849, 50015, 54426, 59089, 64011
Offset: 0
Albert D. Rich (Albert_Rich(AT)msn.com)
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
[n*(7*n^2-1)/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
-
seq(binomial(2*n+1,3)-binomial(n+1,3), n=0..38); # Zerinvary Lajos, Jan 21 2007
-
Table[n (7 n^2 - 1)/6, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
-
makelist(n*(7*n^2-1)/6,n,0,30); /* Martin Ettl, Jan 08 2013 */
-
vector(100, n, n--; n*(7*n^2 - 1)/6) \\ Altug Alkan, Oct 06 2015
A063522
a(n) = n*(5*n^2 - 3)/2.
Original entry on oeis.org
0, 1, 17, 63, 154, 305, 531, 847, 1268, 1809, 2485, 3311, 4302, 5473, 6839, 8415, 10216, 12257, 14553, 17119, 19970, 23121, 26587, 30383, 34524, 39025, 43901, 49167, 54838, 60929, 67455, 74431, 81872, 89793, 98209, 107135, 116586, 126577, 137123, 148239, 159940
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
(1/12)*t*(n^3 - n) + n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
[n*(5*n^2 -3)/2: n in [0..30]]; // G. C. Greubel, May 02 2018
-
lst={};Do[AppendTo[lst, LegendreP[3, n]], {n, 10^2}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
CoefficientList[Series[x*(1 + 13*x + x^2)/(1-x)^4, {x, 0, 50}], x] (* G. C. Greubel, Sep 01 2017 *)
LinearRecurrence[{4,-6,4,-1},{0,1,17,63},40] (* Harvey P. Dale, Sep 06 2023 *)
-
a(n) = { n*(5*n^2 - 3)/2 } \\ Harry J. Smith, Aug 25 2009
A004467
a(n) = n*(11*n^2 - 5)/6.
Original entry on oeis.org
0, 1, 13, 47, 114, 225, 391, 623, 932, 1329, 1825, 2431, 3158, 4017, 5019, 6175, 7496, 8993, 10677, 12559, 14650, 16961, 19503, 22287, 25324, 28625, 32201, 36063, 40222, 44689, 49475, 54591, 60048
Offset: 0
Albert D. Rich (Albert_Rich(AT)msn.com)
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
[n*(11*n^2-5)/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
-
Table[n(11n^2-5)/6,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4,-6,4,-1},{0,1,13,47},80] (* Harvey P. Dale, Sep 22 2013 *)
-
a(n)=n*(11*n^2-5)/6 \\ Charles R Greathouse IV, Sep 28 2011
A062025
a(n) = n*(13*n^2 - 7)/6.
Original entry on oeis.org
0, 1, 15, 55, 134, 265, 461, 735, 1100, 1569, 2155, 2871, 3730, 4745, 5929, 7295, 8856, 10625, 12615, 14839, 17310, 20041, 23045, 26335, 29924, 33825, 38051, 42615, 47530, 52809, 58465, 64511, 70960, 77825, 85119, 92855, 101046, 109705, 118845, 128479, 138620, 149281
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
A063523
a(n) = n*(8*n^2 - 5)/3.
Original entry on oeis.org
0, 1, 18, 67, 164, 325, 566, 903, 1352, 1929, 2650, 3531, 4588, 5837, 7294, 8975, 10896, 13073, 15522, 18259, 21300, 24661, 28358, 32407, 36824, 41625, 46826, 52443, 58492, 64989, 71950, 79391, 87328, 95777, 104754, 114275, 124356, 135013, 146262, 158119, 170600
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
Table[n(8n^2-5)/3,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4,-6,4,-1},{0,1,18,67},81] (* or *) CoefficientList[ Series[ (x+14 x^2+x^3)/(x-1)^4,{x,0,80}],x] (* Harvey P. Dale, Jul 11 2011 *)
-
a(n) = n*(8*n^2 - 5)/3 \\ Harry J. Smith, Aug 25 2009
A100188
Polar structured meta-anti-diamond numbers, the n-th number from a polar structured n-gonal anti-diamond number sequence.
Original entry on oeis.org
1, 6, 27, 84, 205, 426, 791, 1352, 2169, 3310, 4851, 6876, 9477, 12754, 16815, 21776, 27761, 34902, 43339, 53220, 64701, 77946, 93127, 110424, 130025, 152126, 176931, 204652, 235509, 269730, 307551, 349216
Offset: 1
James A. Record (james.record(AT)gmail.com), Nov 07 2004
There are no 1- or 2-gonal anti-diamonds, so 1 and (2n+2) are the first and second terms since all the sequences begin as such.
-
[(1/6)*(2*n^4-2*n^2+6*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
-
Table[(2n^4-2n^2+6n)/6,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1}, {1,6,27,84,205},40] (* Harvey P. Dale, May 11 2016 *)
-
vector(40, n, (n^4 -n^2 +3*n)/3) \\ G. C. Greubel, Nov 08 2018
A051673
Cubic star numbers: a(n) = n^3 + 4*Sum_{i=0..n-1} i^2.
Original entry on oeis.org
0, 1, 12, 47, 120, 245, 436, 707, 1072, 1545, 2140, 2871, 3752, 4797, 6020, 7435, 9056, 10897, 12972, 15295, 17880, 20741, 23892, 27347, 31120, 35225, 39676, 44487, 49672, 55245, 61220, 67611, 74432, 81697, 89420, 97615, 106296, 115477, 125172
Offset: 0
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
a(51) = 51*(51*(7*51-6)+2)/3 = 304351 = 17 * 17903 is semiprime. - _Jonathan Vos Post_, May 27 2010
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
-
[n*(n*(7*n-6)+2)/3: n in [0..50]]; // Vincenzo Librandi, May 12 2011
-
A051673:=n->n*(n*(7*n-6)+2)/3; seq(A051673(n), n=0..40); # Wesley Ivan Hurt, Feb 02 2014
-
Table[n^3+4Sum[i^2,{i,0,n-1}],{n,0,40}] (* or *) LinearRecurrence[ {4,-6,4,-1},{0,1,12,47},40] (* Harvey P. Dale, Jul 22 2011 *)
-
a(n)=n*(n*(7*n-6)+2)/3 \\ Charles R Greathouse IV, Oct 07 2015
-
[n*(7*n^2-6*n+2)/3 for n in range(51)] # G. C. Greubel, Mar 10 2024
Corrected by
T. D. Noe, Nov 01 2006, Nov 08 2006
A166340
Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+8*x+x^2)/(1-x)^4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 19, 19, 1, 1, 42, 114, 42, 1, 1, 89, 510, 510, 89, 1, 1, 184, 1975, 4080, 1975, 184, 1, 1, 375, 7029, 26195, 26195, 7029, 375, 1, 1, 758, 23712, 146954, 261950, 146954, 23712, 758, 1, 1, 1525, 77200, 753800, 2191474, 2191474, 753800, 77200, 1525, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 19, 19, 1;
1, 42, 114, 42, 1;
1, 89, 510, 510, 89, 1;
1, 184, 1975, 4080, 1975, 184, 1;
1, 375, 7029, 26195, 26195, 7029, 375, 1;
1, 758, 23712, 146954, 261950, 146954, 23712, 758, 1;
1, 1525, 77200, 753800, 2191474, 2191474, 753800, 77200, 1525, 1;
- Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
-
(* First program *)
p[x_, 1]:= x/(1-x)^2;
p[x_, 2]:= x*(1+x)/(1-x)^3;
p[x_, 3]:= x*(1+8*x+x^2)/(1-x)^4;
p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]
Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten
(* Second program *)
b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];
t[n_, k_, m_]:= t[n, k]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}];
T[n_, k_, m_]:= T[n, k, m]= If[k==1, 1, t[n-1, k, m] - t[n-1, k-1, m]];
Table[T[n, k, 2], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 11 2022 *)
-
def b(n,k,m):
if (n<2): return 1
elif (k==0): return 0
else: return k^(n-1)*((m+3)*k^2 - m)/3
@CachedFunction
def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) )
def A166340(n,k): return 1 if (k==1) else t(n-1,k,2) - t(n-1,k-1,2)
flatten([[A166340(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 11 2022
A264853
a(n) = n*(n + 1)*(5*n^2 + 5*n - 4)/12.
Original entry on oeis.org
0, 1, 13, 56, 160, 365, 721, 1288, 2136, 3345, 5005, 7216, 10088, 13741, 18305, 23920, 30736, 38913, 48621, 60040, 73360, 88781, 106513, 126776, 149800, 175825, 205101, 237888, 274456, 315085, 360065, 409696, 464288, 524161, 589645, 661080, 738816, 823213, 914641
Offset: 0
Cf. similar sequences listed in
A264854.
-
[n*(n+1)*(5*n^2+5*n-4)/12: n in [0..50]]; // Vincenzo Librandi, Nov 27 2015
-
Table[n (n + 1) (5 n^2 + 5 n - 4)/12, {n, 0, 50}]
LinearRecurrence[{5,-10,10,-5,1},{0,1,13,56,160},40] (* Harvey P. Dale, Aug 14 2017 *)
-
a(n)=n*(n+1)*(5*n^2+5*n-4)/12 \\ Charles R Greathouse IV, Jul 26 2016
Comments