cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 218 results. Next

A341520 Square array A(n,k) = A156552(A005940(1+n)*A005940(1+k)), read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 5, 5, 3, 4, 7, 6, 7, 4, 5, 9, 11, 11, 9, 5, 6, 11, 10, 15, 10, 11, 6, 7, 13, 13, 19, 19, 13, 13, 7, 8, 15, 14, 23, 12, 23, 14, 15, 8, 9, 17, 23, 27, 21, 21, 27, 23, 17, 9, 10, 19, 18, 31, 22, 27, 22, 31, 18, 19, 10, 11, 21, 21, 35, 39, 29, 29, 39, 35, 21, 21, 11, 12, 23, 22, 39, 20, 47, 30, 47, 20, 39, 22, 23, 12
Offset: 0

Views

Author

Antti Karttunen, Feb 13 2021

Keywords

Comments

The indices run as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), etc. The array is symmetric.
This array defines a binary operation on the nonnegative integers that matches up the zeros in the binary representation of each operand (starting from the right, and including as many leading zeros as necessary) and concatenates the two (possibly null) strings of ones to the right of each matched pair of zeros. See the examples. - Peter Munn, Feb 14 2021.
As such it could be useful for implementing multiplication, say, in Turing machines, with a "tape-like" unary-binary encoding of the prime factorization of n (A156552). However, such representation is not very useful if addition or subtraction is also needed.

Examples

			The top left {0..15} X {0..16} corner of the array:
   0,  1,  2,  3,  4,  5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15,
   1,  3,  5,  7,  9, 11,  13,  15,  17,  19,  21,  23,  25,  27,  29,  31,
   2,  5,  6, 11, 10, 13,  14,  23,  18,  21,  22,  27,  26,  29,  30,  47,
   3,  7, 11, 15, 19, 23,  27,  31,  35,  39,  43,  47,  51,  55,  59,  63,
   4,  9, 10, 19, 12, 21,  22,  39,  20,  25,  26,  43,  28,  45,  46,  79,
   5, 11, 13, 23, 21, 27,  29,  47,  37,  43,  45,  55,  53,  59,  61,  95,
   6, 13, 14, 27, 22, 29,  30,  55,  38,  45,  46,  59,  54,  61,  62, 111,
   7, 15, 23, 31, 39, 47,  55,  63,  71,  79,  87,  95, 103, 111, 119, 127,
   8, 17, 18, 35, 20, 37,  38,  71,  24,  41,  42,  75,  44,  77,  78, 143,
   9, 19, 21, 39, 25, 43,  45,  79,  41,  51,  53,  87,  57,  91,  93, 159,
  10, 21, 22, 43, 26, 45,  46,  87,  42,  53,  54,  91,  58,  93,  94, 175,
  11, 23, 27, 47, 43, 55,  59,  95,  75,  87,  91, 111, 107, 119, 123, 191,
  12, 25, 26, 51, 28, 53,  54, 103,  44,  57,  58, 107,  60, 109, 110, 207,
  13, 27, 29, 55, 45, 59,  61, 111,  77,  91,  93, 119, 109, 123, 125, 223,
  14, 29, 30, 59, 46, 61,  62, 119,  78,  93,  94, 123, 110, 125, 126, 239,
  15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255,
  16, 33, 34, 67, 36, 69,  70, 135,  40,  73,  74, 139,  76, 141, 142, 271,
...
From _Peter Munn_, Feb 24 2021: (Start)
We consider the case of n = 10, k = 41, following the procedure in the Feb 14 2021 comment.
First, write 10 and 41 in binary:
  10 = 1010_2
  41 = 101001_2
Add at least one leading zero to each number, equalizing number of zeros:
  0  0  1  0  1  0
  0  1  0  1  0  0  1
Align zeros, but separate ones:
  0     0  1     0  1  0
  |     |        |     |
  0  1  0     1  0     0  1
---------------------------
  0  1  0  1  1  0  1  0  1
Concatenating the ones, as shown above, we get 10110101_2 = 181.
So A(10, 41) = 181.
(End)
		

Crossrefs

Cf. A088698 (main diagonal).
Rows/columns 0-3: A001477, A005408, A341522, A004767. Row/column 7: A004771.
Cf. A341521 (the lower triangular section).

Programs

  • Mathematica
    Block[{nn = 12, a = {1}}, Do[AppendTo[a, If[EvenQ[i], Times @@ Map[Prime[PrimePi[#1] + 1]^#2 & @@ # &, FactorInteger[#]] &@ a[[(i/2) + 1]], 2 a[[((i - 1)/2) + 1]]]], {i, nn}]; Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &[a[[1 + n - k]]*a[[1 + k]] ], {n, 0, nn}, {k, n, 0, -1}]] // Flatten (* Michael De Vlieger, Feb 24 2021 *)
  • PARI
    up_to = 105;
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A341520sq(n,k) = A156552(A005940(1+n)*A005940(1+k));
    A341520list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0,oo, for(col=0,a, i++; if(i > #v, return(v)); v[i] = A341520sq(col,(a-(col))))); (v); };
    v341520 = A341520list(up_to);
    A341520(n) = v341520[1+n];

Formula

A(x, y) = A156552(A005940(1+x) * A005940(1+y)).
For all n>=0, A(0, n) = A(n, 0) = n.
For all x>=0, y>=0, A(x, y) = A(y, x).
For all x, y, z >= 0, A(x, A(y, z)) = A(A(x, y), z).
From Antti Karttunen, Feb 27 2022: (Start)
For all x, y >= 0, A(x, y) = A(A351961(x,y), A351962(x,y)).
For x >= 0, y > 0, A(x, y) = A351960(x, A(x, A297164(y))).
(End)

A003324 A nonrepetitive sequence.

Original entry on oeis.org

1, 2, 3, 4, 1, 4, 3, 2, 1, 2, 3, 2, 1, 4, 3, 4, 1, 2, 3, 4, 1, 4, 3, 4, 1, 2, 3, 2, 1, 4, 3, 2, 1, 2, 3, 4, 1, 4, 3, 2, 1, 2, 3, 2, 1, 4, 3, 2, 1, 2, 3, 4, 1, 4, 3, 4, 1, 2, 3, 2, 1, 4, 3, 4, 1, 2, 3, 4, 1
Offset: 1

Views

Author

Keywords

Comments

Let b(0) be the sequence 1,2,3,4. Proceeding by induction, let b(n) be a sequence of length 2^(n+2). Quarter b(n) into four blocks, A,B,C,D each of length 2^n, so that b(n) = ABCD. Then b(n+1) = ABCDADCB. [After Dean paper.] - Sean A. Irvine, Apr 20 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Positions of 1's, 2's, 3's and 4's: A016813, A343500, A004767, A343501.
Cf. A292077.

Programs

  • Mathematica
    b[0] = Range[4];
    b[n_] := b[n] = Module[{aa, bb, cc, dd}, {aa, bb, cc, dd} = Partition[b[n - 1], 2^(n-1)]; Join[aa, bb, cc, dd, aa, dd, cc, bb] // Flatten];
    b[5] (* Jean-François Alcover, Sep 27 2017 *)
    a[n_] := If[OddQ[n], Mod[n, 4], Module[{e = IntegerExponent[n, 2], k}, k = (n/2^e - 1)/2; If[OddQ[k + e], 2, 4]]];
    Array[a, 100] (* Jean-François Alcover, Apr 19 2021, after Jianing Song *)
  • PARI
    a(n) = if(n%2, n%4, my(e=valuation(n,2), k=bittest(n, e+1)); if((k+e)%2, 2, 4)) \\ Jianing Song, Apr 15 2021
    
  • Python
    def A003324(n): return n&3 if n&1 else 2<<(((n>>(m:=(~n&n-1).bit_length()))+1>>1)+m&1) # Chai Wah Wu, Feb 26 2025

Formula

a(n) = n mod 4 for odd n; for even n, write n = (2*k+1) * 2^e, then a(n) = 2 if k+e is odd, 4 if k+e is even. - Jianing Song, Apr 15 2021
Conjecture: a(2*n) = (A292077(n)+1)*2. Confirmed for first 1000 terms. - John Keith, Apr 18 2021 [This conjecture is correct. Write n = (2*k+1) * 2^e. If k+e is even, then we have A292077(n) = 0 and a(2n) = 2; if k+e is odd, then we have A292077(n) = 1 and a(2n) = 4. - Jianing Song, Nov 27 2021]

A131098 Partial sums of A151798.

Original entry on oeis.org

1, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239
Offset: 1

Views

Author

Hans Isdahl, Sep 24 2007

Keywords

Comments

1 together with A004767. - Omar E. Pol, Feb 23 2014

Examples

			g.f. = x + 3*x^2 + 7*x^3 + 11*x^4 + 15*x^5 + 19*x^6 + 23*x^7 + 27*x^8 + ...
		

Crossrefs

Programs

  • Magma
    I:=[1,3,7]; [n le 3 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..70]]; // Vincenzo Librandi, Feb 25 2014
    
  • Mathematica
    CoefficientList[Series[(x + 2 x^2 + 1)/(x - 1)^2, {x, 0, 80}], x] (* Vincenzo Librandi, Feb 25 2014 *)
    LinearRecurrence[{2,-1},{1,3,7},70] (* Harvey P. Dale, Jan 03 2023 *)
  • PARI
    A131098(n)=abs(4*n-5) \\ M. F. Hasler, Apr 27 2018

Formula

a(1) = 1, a(n) = 4*n - 5 for n >= 2. - Jaroslav Krizek, Aug 15 2009
G.f.: x*(x+2*x^2+1)/(x-1)^2. - R. J. Mathar, Dec 08 2010
E.g.f.: exp(x)*(4*x - 5) + 5 + 2*x. - Stefano Spezia, Mar 21 2025

Extensions

Edited by N. J. A. Sloane, Jun 29 2009

A209615 Completely multiplicative with a(p^e) = 1 if p == 1 (mod 4), a(p^e) = (-1)^e otherwise.

Original entry on oeis.org

1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1
Offset: 1

Views

Author

Michael Somos, Mar 10 2012

Keywords

Comments

Turn sequence of the alternate paperfolding curve. Davis and Knuth define the alternate paperfolding curve by folding a long strip of paper repeatedly in half alternately to the left side or right side, then unfolding it so each crease is 90 degrees (or other angle). a(n) is their d(n) at equation 4.2. Their equation 6.2 (varied to d(2) = -1 as described there) is equivalent to the definition here. The curve is drawn by a unit step forward, turn a(1)*90 degrees left, a unit step forward, turn a(2)*90 degrees left, and so on. - Kevin Ryde, Apr 18 2020

Examples

			G.f. = x - x^2 - x^3 + x^4 + x^5 + x^6 - x^7 - x^8 + x^9 - x^10 - x^11 - x^12 + ...
From _Kevin Ryde_, Apr 18 2020: (Start)
                   ...              alternate
                    | -1           paperfolding
            -1 --->\ \<--- +1         curve
             ^   -1 |      ^
             |      v      |      turns +1 left
  start --> +1     +1 ---> +1        or -1 right
(End)
		

References

  • Chandler Davis and Donald E. Knuth, Number Representations and Dragon Curves -- I and II, Journal of Recreational Mathematics, volume 3, number 2, April 1970, pages 66-81, and number 3, July 1970, pages 133-149. Reprinted in Donald E. Knuth, Selected Papers on Fun and Games, CSLI Publications, 2010, pages 571-614.

Crossrefs

Indices of 1: A338692 = A016813 U A343501; indices of -1: A338691 = A004767 U A343500.
Inverse Moebius transform gives A338690.

Programs

  • Mathematica
    A209615[n_] := JacobiSymbol[-1, n]*(-1)^IntegerExponent[n, 2];
    Array[A209615, 100] (* Paolo Xausa, Feb 26 2025 *)
  • PARI
    {a(n) = my(v); if( n==0, 0, v = valuation( n, 2); (-1)^(n/2^v\2 + v))};
    
  • PARI
    {a(n) = if( n!=0, -kronecker( -1, n) * (-1)^if( n!=0, 1 - valuation( n, 2) %2))};
    
  • PARI
    {a(n) = my(A, p, e, f); sign(n) * if( n==0, 0, A = factor(abs(n)); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; (-1)^(e * (p%4 != 1))) )};
    
  • Python
    def A209615(n): return -1 if ((n>>(m:=(~n&n-1).bit_length()))+1>>1)+m&1^1 else 1 # Chai Wah Wu, Feb 25 2025

Formula

G.f.: Sum_{k>=0} (-1)^k * x^(2^k) / (1 + x^(2^(k+1))).
G.f. A(x) satisfies A(x) + A(x^2) = x / (1 + x^2).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (v + w) - (u + v)^2 * (1 + 2*(v + w)).
If p is prime then a(p) = 1 if and only if p is in A002144.
a(4*n + 1) = 1, a(4*n + 3) = -1. a(2*n) = a(3*n) = a(-n) = -a(n).
a(n) = -(-1)^A106665(n-1) unless n=0.
a(2n) = -a(n), a(2n+1) = (-1)^n. [Davis and Knuth equation 4.2] - Kevin Ryde, Apr 18 2020
From Jianing Song, Apr 24 2021: (Start)
a(n) = 1 <=> A003324(n) = 1 or 4, a(n) = -1 <=> A003324(n) = 2 or 3. In other words, a(n) = Legendre(A003324(n), 5) == A003324(n)^2 (mod 5).
a(n) = A034947(n) * (-1)^(v2(n)), where v2(n) = A007814(n) is the 2-adic valuation of n.
Dirichlet g.f.: beta(s)/(1 + 2^(-s)). (End)

A245049 Number A(n,k) of hybrid k-ary trees with n internal nodes; square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 7, 5, 1, 2, 11, 31, 8, 1, 2, 15, 81, 154, 13, 1, 2, 19, 155, 684, 820, 21, 1, 2, 23, 253, 1854, 6257, 4575, 34, 1, 2, 27, 375, 3920, 24124, 60325, 26398, 55, 1, 2, 31, 521, 7138, 66221, 331575, 603641, 156233, 89, 1, 2, 35, 691, 11764, 148348, 1183077, 4736345, 6210059, 943174, 144
Offset: 0

Views

Author

Alois P. Heinz, Jul 10 2014

Keywords

Examples

			Square array A(n,k) begins:
   1,    1,     1,      1,       1,       1,       1, ...
   2,    2,     2,      2,       2,       2,       2, ...
   3,    7,    11,     15,      19,      23,      27, ...
   5,   31,    81,    155,     253,     375,     521, ...
   8,  154,   684,   1854,    3920,    7138,   11764, ...
  13,  820,  6257,  24124,   66221,  148348,  290305, ...
  21, 4575, 60325, 331575, 1183077, 3262975, 7585749, ...
		

Crossrefs

Rows n=0-2 give: A000012, A007395, A004767(k-1).
Main diagonal gives A245054.

Programs

  • Maple
    A:= (n, k)-> add(binomial((k-1)*n+i, i)*
        binomial((k-1)*n+i+1, n-i), i=0..n)/((k-1)*n+1):
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := Sum[Binomial[(k-1)*n+i, i]*Binomial[(k-1)*n+i+1, n-i], {i, 0, n}]/((k-1)*n+1); Table[A[n, 1+d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 18 2017, translated from Maple *)

Formula

A(n,k) = 1/((k-1)*n+1) * Sum_{i=0..n} C((k-1)*n+i,i)*C((k-1)*n+i+1,n-i).
A(n,k) = [x^n] ((1+x)/(1-x-x^2))^((k-1)*n+1) / ((k-1)*n+1).
G.f. for column k satisfies: A_k(x) = (1+x*A_k(x)^(k-1)) * (1+x*A_k(x)^k).

A289840 Complex cross sequence (see Comments lines for definition).

Original entry on oeis.org

0, 1, 3, 11, 19, 27, 35, 67, 83, 99, 115, 163, 179, 195, 211, 275, 323, 355, 387, 467, 483, 499, 515, 579, 627, 675, 707, 787, 803, 819, 835, 899, 947, 995, 1027, 1107, 1123, 1139, 1155, 1219, 1267, 1315, 1347, 1427, 1443, 1459, 1475, 1539, 1587, 1635, 1667, 1747, 1763, 1779, 1795, 1859, 1907, 1955, 1987, 2067
Offset: 0

Views

Author

Omar E. Pol, Jul 14 2017

Keywords

Comments

The sequence arises from a "hybrid" cellular automaton on the infinite square grid, which consist of two successive generations using toothpicks of length 2 (cf. A139250) followed by two successive generations using the rules of the D-toothpick sequence A220500.
In other words (and more precisely) we have that:
1) If n is congruent to 1 or 2 mod 4 (cf. A042963), for example: 1, 2, 5, 6, 9, 10, ..., the elements added to the structure at n-th stage must be toothpicks of length 2. These toothpicks are connected to the structure by their midpoints.
2) If n is a positive integer of the form 4*k-1 (cf. A004767), for example: 3, 7, 11, 15, ..., the elements added to the structure at n-th stage must be D-toothpicks of length sqrt(2) and eventually D-toothpicks of length sqrt(2)/2, in both cases the D-toothpicks are connected to the structure by their endpoints, in the same way as in the even-indexed stages of A220500.
3) If n is a positive multiple of 4 (cf. A008586) the elements added to the structure at n-th stage must be toothpicks of length 1 connected by their endpoints, in the same way as in the odd-indexed stages of A220500.
a(n) is the total number of elements in the structure after n generations.
A289841 (the first differences) gives the number of elements added at n-th stage.
Note that after 19 generations the structure is a 72-gon which essentially looks like a diamond (as a square that has been rotated 45 degrees).
The surprising fact is that from n = 20 up to 27 the structure is gradually transformed into a square cross.
The diamond mentioned above can be interpreted as the center of the cross. The diamond has an area equal to 384 and it contains 222 polygonal regions (or enclosures) of 11 distinct shapes. Missing two heptagonal shapes which are in the arms of the square cross only.
In total the complex cross contains 13 distinct shapes of polygonal regions. There are ten polygonal shapes that have an infinite number of copies. On the other hand, three of these polygonal shapes have a finite number of copies because they are in the center of the cross only. For example: there are only four copies of the concave 14-gon, which is also the largest polygon in the structure.
For n => 27 the shape of the square cross remains forever because its four arms grow indefinitely.
Every arm has a minimum width equal to 8, and a maximum width equal to 12.
Every arm also has a periodic structure which can be dissected in infinitely many clusters of area equal to 64. Every cluster is a 30-gon that contains 40 polygonal regions of nine distinct shapes.
If n is a number of the form 8*k-3 (cf. A017101) and greater than 19, for example: 27, 35, 43, 51, ..., then at n-th stage a new cluster is finished in every arm of the cross.
The behavior is similar to A290220 and A294020 in the sense that these three cellular automata have the property of self-limiting their growth only in some directions of the square grid. - Omar E. Pol, Oct 29 2017

Crossrefs

Programs

  • PARI
    concat(0, Vec(x*(1 + 2*x + 8*x^2 + 8*x^3 + 8*x^4 + 8*x^5 + 32*x^6 + 16*x^7 + 15*x^8 + 14*x^9 + 40*x^10 + 8*x^11 + 8*x^12 + 8*x^13 + 32*x^14 + 32*x^15 + 16*x^16 + 16*x^17 + 32*x^18 + 16*x^24) / ((1 - x)^2*(1 + x)*(1 + x^2)*(1 + x^4))+ O(x^50))) \\ Colin Barker, Nov 12 2017

Formula

From Colin Barker, Nov 11 2017: (Start)
G.f.: x*(1 + 2*x + 8*x^2 + 8*x^3 + 8*x^4 + 8*x^5 + 32*x^6 + 16*x^7 + 15*x^8 + 14*x^9 + 40*x^10 + 8*x^11 + 8*x^12 + 8*x^13 + 32*x^14 + 32*x^15 + 16*x^16 + 16*x^17 + 32*x^18 + 16*x^24) / ((1 - x)^2*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = a(n-1) + a(n-8) - a(n-9) for n>19.
(End)

A290220 Narrow cross sequence (see Comments lines for definition).

Original entry on oeis.org

0, 2, 6, 10, 18, 26, 34, 42, 58, 70, 78, 94, 106, 114, 130, 142, 150, 166, 178, 186, 202, 214, 222, 238, 250, 258, 274, 286, 294, 310, 322, 330, 346, 358, 366, 382, 394, 402, 418, 430, 438, 454, 466, 474, 490, 502, 510, 526, 538, 546, 562, 574, 582, 598, 610, 618, 634, 646, 654, 670, 682, 690, 706, 718, 726, 742, 754
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2017

Keywords

Comments

The sequence arises from a "hybrid" cellular automaton, which consist essentially in two successive generations using the rules of the D-toothpick sequence A194270 followed by one generation using toothpicks of length 2.
On the infinite square grid we start at stage 0 with no toothpicks, so a(0) = 0.
For the next stages we have the following rules:
1) At stage 1 we place two D-toothpicks connected by their endpoints on the same diagonal.
2) If n is a number of the form 3*k + 2 (cf. A016789), for example: 2, 5, 8, 11, 14, ..., the elements added to the structure at n-th stage must be toothpicks of length 1 connected by their endpoints, in the same way as in the even-indexed stages of A194270.
3) If n is a positive multiple of 3 (cf. A008585) the elements added to the structure at n-th stage must be toothpicks of length 2. These toothpicks are connected to the structure by their midpoints.
4) If n is a number of the form 3*k + 1 (cf. A016777) and > 1, for example: 4, 7, 10, 13, ..., the elements added to the structure at n-th stage must be D-toothpicks of length sqrt(2) connected to the structure by their endpoints, in the same way as in the odd-indexed stages of A194270.
a(n) is the total number of elements in the structure after n generations.
A290221 (the first differences) gives the number of elements added at n-th stage.
The surprising fact is that from n = 7 up to 9 the structure is gradually transformed into a square cross.
For n => 9 the shape of the square cross remains forever because its four arms grow indefinitely in the directions North, East, West and South.
Every arm has a width equal to 4.
Every arm also has a periodic structure which can be dissected in infinitely many clusters.
In total, the narrow cross contains five distinct shapes of polygonal regions. There are three polygonal shapes that have an infinite number of copies. On the other hand, two polygonal shapes have a finite number of copies because they are in the center of the cross only. they are the heptagon and the hexagon of area 5.
The structure looks like a square cross but it's simpler than the structure of the complex cross described in A289840.
The behavior is similar to A289840 and A294020 in the sense that these three cellular automata have the property of self-limiting their growth only in some directions of the square grid. - Omar E. Pol, Oct 29 2017

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 1, -1}, {0, 2, 6, 10, 18, 26, 34, 42, 58, 70}, 100] (* Paolo Xausa, Aug 27 2024 *)
  • PARI
    concat(0, Vec(2*x*(1 + 2*x + 2*x^2 + 3*x^3 + 2*x^4 + 2*x^5 + 4*x^7 + 2*x^8) / ((1 - x)^2*(1 + x + x^2)) + O(x^60))) \\ Colin Barker, Nov 12 2017

Formula

From Colin Barker, Nov 11 2017: (Start)
G.f.: 2*x*(1 + 2*x + 2*x^2 + 3*x^3 + 2*x^4 + 2*x^5 + 4*x^7 + 2*x^8) / ((1 - x)^2*(1 + x + x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>9. [Corrected by Paolo Xausa, Aug 27 2024]
(End)

A071698 Lesser members of twin prime pairs of form (4*k+3, 4*k+5), k >= 0.

Original entry on oeis.org

3, 11, 59, 71, 107, 179, 191, 227, 239, 311, 347, 419, 431, 599, 659, 827, 1019, 1031, 1091, 1151, 1319, 1427, 1451, 1487, 1607, 1619, 1667, 1787, 1871, 1931, 2027, 2087, 2111, 2267, 2339, 2591, 2687, 2711, 2999, 3119, 3167, 3251, 3299
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 04 2002

Keywords

Comments

Corresponding greater members: A071699(n).

Crossrefs

Cf. A010051, subsequence of A004767.

Programs

  • Haskell
    a071698 n = a071698_list !! (n-1)
    a071698_list = [x | x <- [3, 7 ..], a010051' x == 1, a010051' (x+2) == 1]
    -- Reinhard Zumkeller, Aug 05 2014
    
  • Magma
    [4*k+3:k in [0..1000]|IsPrime(4*k+3) and IsPrime(4*k+5)]; // Marius A. Burtea, Nov 06 2019
  • Mathematica
    Transpose[Select[Table[4n+{3,5},{n,0,1000}],AllTrue[#,PrimeQ]&]][[1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 16 2015 *)

Formula

a(n) = 2*A241557(n+1)-1. - Hilko Koning, Nov 06 2019

A141759 a(n) = 16n^2 + 32n + 15.

Original entry on oeis.org

15, 63, 143, 255, 399, 575, 783, 1023, 1295, 1599, 1935, 2303, 2703, 3135, 3599, 4095, 4623, 5183, 5775, 6399, 7055, 7743, 8463, 9215, 9999, 10815, 11663, 12543, 13455, 14399, 15375, 16383, 17423, 18495, 19599, 20735, 21903, 23103, 24335, 25599
Offset: 0

Views

Author

Miklos Kristof, Sep 15 2008

Keywords

Comments

Via the partial fraction decomposition 1/((4n+3)*(4n+5)) = (1/2) *(1/(4n+3) -1/(4n+5)) we find 2*Sum_{n>=0} (-1)^n/a(n) = 2*Sum_{n>=0} (-1)^n/( (4*n+3)*(4*n+5) ) = 1/3 -1/5 -1/7 +1/9 +1/11 -1/13 -1/15 +1/17 +1/19 -- ++ ... = (1/1 + 1/3 -1/5 -1/7 +1/9 +1/11 -1/13 -1/15 +1/17 +1/19 -- ++ ..)-1 = Sum_{n>=0} (-1)^n/A016813(n) + Sum_{n>=0} (-1)^n/A004767(n) -1 = -1 + Sum_{n>=0} b(n)/n^1 where b(n) = 1, 0, 1, 0, -1, 0, -1, 0 is a sequence with period length 8, one of the Dirichlet L-series modulo 8. The alternating sum becomes -1 +L(m=8,r=4,s=1) = Pi*sqrt(2)/4-1 = A093954 - 1.
Pi = 4 - 8*Sum(1/a(n)) noted by Bronstein-Semendjajew for the variant a(n) = (4n-1)*(4n+1) starting at n=1. - Frank Ellermann, Sep 18 2011
The identity (16*n^2-1)^2 - (64*n^2-8)*(2*n)^2 = 1 can be written as a(n)^2 - A158487(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 09 2012
Sequence found by reading the line from 15, in the direction 15, 63,... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012
Essentially the least common multiple of 4*n+1 and 4*n-1. - Colin Barker, Feb 11 2017

References

  • Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed., 1965, ch. 4.1.8.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.

Crossrefs

Programs

Formula

G.f.: (15+18*x-x^2)/(1-x)^3.
E.g.f.: (15+48*x+16*x^2)*exp(x).
a(n) = a(-n-2) = A016802(n+1) - 1. - Bruno Berselli, Sep 22 2011
From Amiram Eldar, Feb 04 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = Pi/(2*sqrt(2)) (A093954).
Product_{n>=0} (1 - 1/a(n)) = sin(Pi/(2*sqrt(2))). (End)

Extensions

Formula indices corrected by R. J. Mathar, Jul 07 2009

A242118 Number of unit squares that intersect the circumference of a circle of radius n centered at (0,0).

Original entry on oeis.org

0, 4, 12, 20, 28, 28, 44, 52, 60, 68, 68, 84, 92, 92, 108, 108, 124, 124, 140, 148, 148, 164, 172, 180, 188, 180, 196, 212, 220, 220, 228, 244, 252, 260, 260, 268, 284, 284, 300, 300, 308, 316, 332, 340, 348, 348, 364, 372, 380, 388, 380
Offset: 0

Views

Author

Kival Ngaokrajang, May 05 2014

Keywords

Comments

For the points that form the Pythagorean triple (for example see illustration n = 5, on the first quadrant at coordinate (4,3) and (3,4)), the transit of circumference occurs exactly at the corners, therefore there are no additional intersecting squares on the upper or lower rows (diagonally NE & SW directions) of such points.
If the center of the circle is instead chosen at the middle of a square grid centered at (1/2,0), the sequence will be 2*A004767(n-1).

Crossrefs

Programs

  • Python
    a = lambda n: sum(4 for x in range(n) for y in range(n)
                        if x**2 + y**2 < n**2 and (x+1)**2 + (y+1)**2 > n**2)
    
  • Python
    from sympy import factorint
    def a(n):
        r = 1
        for p, e in factorint(n).items():
            if p%4 == 1: r *= 2*e + 1
        return 8*n - 4*r if n > 0 else 0

Formula

a(n) = 4*Sum{k=1..n} ceiling(sqrt(n^2 - (k-1)^2)) - floor(sqrt(n^2 - k^2)). - Orson R. L. Peters, Jan 30 2017
a(n) = 8*n - A046109(n) for n > 0. - conjectured by Orson R. L. Peters, Jan 30 2017, proved by Andrey Zabolotskiy, Jan 31 2017

Extensions

Terms corrected by Orson R. L. Peters, Jan 30 2017
Previous Showing 41-50 of 218 results. Next