cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A091629 Product of digits associated with A091628(n). Essentially the same as A007283.

Original entry on oeis.org

6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 1

Views

Author

Enoch Haga, Jan 24 2004

Keywords

Comments

Sequence arising in Farideh Firoozbakht's solution to Prime Puzzle 251 - 23 is the only pointer prime (A089823) not containing digit "1".
The monotonic increasing value of successive product of digits strongly suggests that in successive n the digit 1 must be present.

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), A005009 (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), A110288 (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).

Programs

Formula

a(n) = 3 * 2^n = product of digits of A091628(n).
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 6*2^(n-1).
a(n) = 2*a(n-1), with a(1) = 6.
G.f.: 6*x/(1-2*x). (End)
E.g.f.: 3*(exp(2*x) - 1). - G. C. Greubel, Jan 05 2023

Extensions

Edited and extended by Ray Chandler, Feb 07 2004

A248461 T(n,k)=Number of length n+2 0..k arrays with no three consecutive terms having the sum of any two elements equal to twice the third.

Original entry on oeis.org

6, 18, 10, 48, 36, 16, 96, 148, 72, 26, 174, 380, 460, 144, 42, 282, 862, 1512, 1436, 288, 68, 432, 1652, 4272, 6040, 4488, 576, 110, 624, 2956, 9684, 21182, 24160, 14040, 1152, 178, 870, 4860, 20236, 56782, 105026, 96736, 43940, 2304, 288, 1170, 7642, 37868
Offset: 1

Views

Author

R. H. Hardin, Oct 06 2014

Keywords

Comments

Table starts
...6...18......48.......96.......174........282.........432.........624
..10...36.....148......380.......862.......1652........2956........4860
..16...72.....460.....1512......4272.......9684.......20236.......37868
..26..144....1436.....6040.....21182......56782......138534......295078
..42..288....4488....24160....105026.....332940......948412.....2299356
..68..576...14040....96736....520788....1952254.....6493036....17917712
.110.1152...43940...387488...2582406...11447368....44452660...139623544
.178.2304..137532..1552448..12805334...67123652...304332258..1088015294
.288.4608..430508..6220480..63497776..393591402..2083523194..8478351478
.466.9216.1347652.24926080.314866606.2307892826.14264241960.66067495706

Examples

			Some solutions for n=5 k=4
..3....4....4....0....1....4....3....1....0....0....1....1....1....1....3....4
..4....4....0....1....3....1....2....1....2....3....1....0....3....3....0....1
..4....1....4....1....0....2....3....4....3....1....0....1....4....4....3....1
..3....4....4....0....1....1....3....1....2....0....1....0....0....0....3....4
..0....0....1....4....1....2....2....4....3....1....4....3....0....0....4....1
..3....4....2....0....2....1....3....1....3....4....4....4....3....1....1....4
..3....3....4....0....2....1....2....2....4....2....0....4....1....3....1....4
		

Crossrefs

Column 1 is A006355(n+4)
Column 2 is A005010

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1)
k=3: a(n) = 2*a(n-1) +3*a(n-2) +4*a(n-3) -3*a(n-4) -12*a(n-5) -4*a(n-6)
k=4: a(n) = 3*a(n-1) +5*a(n-2) +2*a(n-3) -16*a(n-4) -28*a(n-5) -8*a(n-6)
k=5: [order 12]
k=6: [order 16]
k=7: [order 22]
Empirical for row n:
n=1: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5); also a cubic polynomial plus a constant quasipolynomial with period 2
n=2: a(n) = 2*a(n-1) -a(n-3) -2*a(n-5) +2*a(n-6) +a(n-8) -2*a(n-10) +a(n-11); also a quartic polynomial plus a linear quasipolynomial with period 12
n=3: [order 27; also a degree 5 polynomial plus a quadratic quasipolynomial with period 840]
n=4: [order 61]

A250769 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

9, 18, 18, 35, 34, 36, 68, 62, 66, 72, 133, 114, 114, 130, 144, 262, 214, 196, 216, 258, 288, 519, 410, 344, 350, 418, 514, 576, 1032, 798, 622, 572, 648, 820, 1026, 1152, 2057, 1570, 1158, 962, 996, 1234, 1622, 2050, 2304, 4106, 3110, 2208, 1680, 1558, 1812
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Comments

Table starts
....9...18....35....68...133...262...519..1032..2057..4106...8203..16396..32781
...18...34....62...114...214...410...798..1570..3110..6186..12334..24626..49206
...36...66...114...196...344...622..1158..2208..4284..8410..16634..33052..65856
...72..130...216...350...572...962..1680..3046..5700.10922..21272..41870..82956
..144..258...418...648...996..1558..2526..4284..7600.14010..26586..51472.100956
..288..514...820..1234..1812..2666..4020..6322.10468.18250..33252..62642.120756
..576.1026..1622..2396..3412..4798..6810..9960.15272.24794..42622..76948.144156
.1152.2050..3224..4710..6580..8978.12192.16798.23948.35946..57400..97526.174756
.2304.4098..6426..9328.12884.17254.22758.30036.40368.56314..82994.130648.219756
.4608.8194.12828.18554.25460.33722.43692.56074.72276.95114.130220.188858.293556

Examples

			Some solutions for n=4 k=4
..1..1..1..1..0....1..0..0..0..0....1..0..1..1..0....1..1..0..1..1
..1..1..1..1..0....1..1..1..1..1....1..0..1..1..0....1..1..0..1..1
..1..1..1..1..0....0..0..0..0..0....1..0..1..1..1....1..1..0..1..1
..1..1..1..1..0....0..0..0..0..1....1..0..1..1..1....1..1..0..1..1
..0..0..0..0..1....0..0..0..0..1....1..0..1..1..1....1..1..0..1..1
		

Crossrefs

Column 1 is A005010(n-1)
Column 2 is A052548(n+3)
Row 1 is A083706(n+1)

Formula

Empirical for column k: (k+2)^2*2^(n-1) plus a linear polynomial in n
k=1: a(n) = 2*a(n-1); a(n) = 9*2^(n-1)
k=2: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 16*2^(n-1) + 2
k=3: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 25*2^(n-1) + 2*n + 8
k=4: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 36*2^(n-1) + 10*n + 22
k=5: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 49*2^(n-1) + 32*n + 52
k=6: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 64*2^(n-1) + 84*n + 114
k=7: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 81*2^(n-1) + 198*n + 240
k=8: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 100*2^(n-1) + 438*n + 494
k=9: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 121*2^(n-1) + 932*n + 1004
Empirical for row n: (4*n+4)*2^(k-1) plus a quadratic polynomial in k
n=1: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 8*2^(n-1) + n
n=2: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3); a(n) = 12*2^(n-1) + 4*n + 2
n=3: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n) = 16*2^(n-1) + n^2 + 11*n + 8
n=4: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n) = 20*2^(n-1) + 4*n^2 + 26*n + 22
n=5: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n) = 24*2^(n-1) + 11*n^2 + 57*n + 52
n=6: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n) = 28*2^(n-1) + 26*n^2 + 120*n + 114
n=7: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n) = 32*2^(n-1) + 57*n^2 + 247*n + 240
n=8: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n) = 36*2^(n-1) + 120*n^2 + 502*n + 494
n=9: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) -2*a(n-4); a(n) = 40*2^(n-1) + 247*n^2 + 1013*n + 1004

A090570 Numbers that are congruent to {0, 1} mod 9.

Original entry on oeis.org

0, 1, 9, 10, 18, 19, 27, 28, 36, 37, 45, 46, 54, 55, 63, 64, 72, 73, 81, 82, 90, 91, 99, 100, 108, 109, 117, 118, 126, 127, 135, 136, 144, 145, 153, 154, 162, 163, 171, 172, 180, 181, 189, 190, 198, 199, 207, 208, 216, 217, 225, 226
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 25 2004

Keywords

Examples

			13 is 1101 in base 2, so a(13+1) = a(14) = 36*1 + 18*1 + 9*0 + 1*1 = 36+18+1 = 55. - _Philippe Deléham_, Oct 17 2011
		

Crossrefs

Union of A008591 and A017173. - Reinhard Zumkeller, Oct 10 2008

Programs

Formula

A145389(a(n)) = A010888(a(n)). - Reinhard Zumkeller, Oct 10 2008
a(n) = 9*n - a(n-1) - 17 (with a(1)=0). - Vincenzo Librandi, Nov 16 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 9*n/2 - 25/4 - 7*(-1)^n/4.
G.f.: x^2*(1+8*x)/( (1+x)*(1-x)^2 ). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*A005010(k-1), with A005010(-1)=1. - Philippe Deléham, Oct 17 2011.
E.g.f.: 8 + ((18*x - 25)*exp(x) - 7*exp(-x))/4. - David Lovler, Sep 03 2022

A110287 a(n) = 17*2^n.

Original entry on oeis.org

17, 34, 68, 136, 272, 544, 1088, 2176, 4352, 8704, 17408, 34816, 69632, 139264, 278528, 557056, 1114112, 2228224, 4456448, 8912896, 17825792, 35651584, 71303168, 142606336, 285212672, 570425344, 1140850688, 2281701376, 4563402752, 9126805504, 18253611008
Offset: 0

Views

Author

Alexandre Wajnberg, Sep 07 2005

Keywords

Comments

The first differences are the sequence itself. Doubling the terms gives the same sequence (beginning one step further).
17 times powers of 2. - Omar E. Pol, Dec 17 2008

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A003945 (m=1), A020714 (m=2), A005009 (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), this sequence (m=8), A110288 (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).
Cf. A007283.

Programs

Formula

G.f.: 17/(1-2*x). - Philippe Deléham, Nov 23 2008
a(n) = 17*A000079(n). - Omar E. Pol, Dec 17 2008
a(n) = 2*a(n-1) (with a(0)=17). - Vincenzo Librandi, Dec 26 2010
a(n) = A173786(n+4, n) for n>3. - Reinhard Zumkeller, Feb 28 2010
E.g.f.: 17*exp(2*x). - G. C. Greubel, Jan 05 2023

Extensions

Edited by Omar E. Pol, Dec 16 2008

A116453 Third smallest number with exactly n prime factors.

Original entry on oeis.org

5, 9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 9216, 18432, 36864, 73728, 147456, 294912, 589824, 1179648, 2359296, 4718592, 9437184, 18874368, 37748736, 75497472, 150994944, 301989888, 603979776, 1207959552, 2415919104
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 16 2006

Keywords

Comments

Smallest term in A116451 having exactly n prime factors;
a(n) = A116451(A116454(n)) = A116454(n) + 2 * n + 3;
a(n) = A005010(n-2) = 9*2^(n - 2) for n > 1.

Examples

			a(1) =  5 = A000040(3) > A000040(2) =  3 > A000040(1) =  2;
a(2) =  9 = A001358(3) > A001358(2) =  6 > A001358(1) =  4;
a(3) = 18 = A014612(3) > A014612(2) = 12 > A014612(1) =  8;
a(4) = 36 = A014613(3) > A014613(2) = 24 > A014613(1) = 16.
		

Programs

A279634 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 3/2.

Original entry on oeis.org

1, -3, 5, -9, 18, -36, 72, -144, 288, -576, 1152, -2304, 4608, -9216, 18432, -36864, 73728, -147456, 294912, -589824, 1179648, -2359296, 4718592, -9437184, 18874368, -37748736, 75497472, -150994944, 301989888, -603979776, 1207959552, -2415919104, 4831838208
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2016

Keywords

Comments

After first 3 terms, agrees with A005010 except for signs; in particular 9 divides a(n) for n >= 3.
Suppose r = c/d is a rational number and (a(n)) is the coefficient series for 1/([r] + [2r]x + [3r]x^2 + ...). Let (s(k)) be the increasing sequence of indices n(k) for which a(n(k)) > = 0. In the table below, "yes" indicates that a check of the first 1000 terms indicates that (n(k)) is (eventually) periodic. Column 1 gives selected values of r, and column 2 gives the corresponding coefficient series.
3/2 A279634 yes
4/3 A279675 no
5/3 A279676 no
5/4 A279677 yes
7/4 A279678 yes
6/5 A279778 no
7/5 A279779 no
8/5 A279780 yes
9/5 A279781 no

Crossrefs

Cf. A005010.

Programs

  • Mathematica
    z = 50; f[x_] := f[x] = Sum[Floor[(3/2)*(k + 1)] x^k, {k, 0, z}]; f[x]
    CoefficientList[Series[1/f[x], {x, 0, z}], x]
    LinearRecurrence[{-2},{1,-3,5,-9},40] (* Harvey P. Dale, Jul 28 2023 *)

Formula

G.f.: 1/(1 + 3x + 4x^2 + 6x^3 + ...).
G.f.: (1 - x) (1 - x^2)/(1 + 2x).
E.g.f.: - (1/8) - (3/4)*x + (1/4)*x^2 + (9/8)*exp(-2*x). - Alejandro J. Becerra Jr., Feb 16 2021

A110288 a(n) = 19*2^n.

Original entry on oeis.org

19, 38, 76, 152, 304, 608, 1216, 2432, 4864, 9728, 19456, 38912, 77824, 155648, 311296, 622592, 1245184, 2490368, 4980736, 9961472, 19922944, 39845888, 79691776, 159383552, 318767104, 637534208, 1275068416, 2550136832, 5100273664, 10200547328, 20401094656
Offset: 0

Views

Author

Alexandre Wajnberg, Sep 07 2005

Keywords

Comments

The first differences are the sequence itself. Doubling the terms gives the same sequence (beginning one step further).
19 times powers of 2. - Omar E. Pol, Dec 17 2008

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), A005009 (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), this sequence (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).

Programs

Formula

G.f.: 19/(1-2*x). - Philippe Deléham, Nov 23 2008
a(n) = A000079(n)*19. - Omar E. Pol, Dec 17 2008
E.g.f.: 19*exp(2*x). - G. C. Greubel, Jan 04 2023

Extensions

Edited by Omar E. Pol, Dec 16 2008

A327539 Starting from n: as long as the decimal representation starts with a positive even number, divide the largest such prefix by 2; a(n) corresponds to the final value.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 11, 11, 13, 3, 15, 13, 17, 7, 19, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 11, 11, 13, 11, 15, 13, 17, 3, 19, 15, 51, 13, 53, 17, 55, 7, 57, 19, 59, 15, 31, 31, 33, 1, 35, 33, 37, 17, 39, 35, 71
Offset: 0

Views

Author

Rémy Sigrist, Nov 29 2019

Keywords

Comments

For n > 0, as long as we have a number whose decimal representation is the concatenation of a positive even number, say u, and a possibly empty string of odd digits, say v, we replace this number with the concatenation of u/2 and v; eventually only odd digits remain.

Examples

			For n = 10000:
- 10000 gives 10000/2 = 5000,
- 5000 gives 5000/2 = 2500,
- 2500 gives 2500/2 = 1250,
- 1250 gives 125/2 = 625,
- 625 gives 62/2 followed by 5 = 315,
- 315 has only odd digits, so a(10000) = 315.
		

Crossrefs

See A329249, A329424 and A329428 for similar sequences.

Programs

Formula

a(n) <= n with equality iff n = 0 or n belongs to A014261.
a(2*n) = a(n).
a(10*k + v) = 10*a(k) + v for any k >= 0 and v in {1, 3, 5, 7, 9}.
a(n) = 1 iff n is a power of 2.
a(n) = 3 iff n belongs to A007283.
a(n) = 5 iff n belongs to A020714.
a(n) = 7 iff n belongs to A005009.
a(n) = 9 iff n belongs to A005010.
a(n) = a(n+1) iff n belongs to A215145.

A140683 a(n) = 3*(-1)^(n+1)*2^n - 1.

Original entry on oeis.org

-4, 5, -13, 23, -49, 95, -193, 383, -769, 1535, -3073, 6143, -12289, 24575, -49153, 98303, -196609, 393215, -786433, 1572863, -3145729, 6291455, -12582913, 25165823, -50331649, 100663295, -201326593, 402653183, -805306369, 1610612735, -3221225473
Offset: 0

Views

Author

Paul Curtz, Jul 11 2008

Keywords

Comments

Alternated reading of negative of A140660 and A140529.
The binomial transform yields -4 followed by the negative of A140657.
The inverse binomial transform yields essentially a signed version of A000244. - R. J. Mathar, Aug 02 2008

Programs

  • Magma
    [3*(-1)^(n+1)*2^n-1: n in [0..40]]; // Vincenzo Librandi, Aug 08 2011
  • Mathematica
    Table[3(-1)^(n+1)2^n-1,{n,0,40}] (* or *) LinearRecurrence[{-1,2},{-4,5},40] (* Harvey P. Dale, May 26 2011 *)

Formula

a(2n) = -A140660(n). a(2n+1) = A140529(n).
a(n+1) - a(n) = (-1)^n*A005010(n). a(2n) + a(2n+1) = A096045(n).
a(n) = A140590(n+1) - 2*A140590(n).
O.g.f: (4-x)/((x-1)(2x+1)). - R. J. Mathar, Aug 02 2008
a(n) = -a(n-1) + 2*a(n-2); a(0)=-4, a(1)=5. - Harvey P. Dale, May 26 2011

Extensions

Edited and extended by R. J. Mathar, Aug 02 2008
Previous Showing 11-20 of 37 results. Next