Original entry on oeis.org
7, 14, 28, 56, 112, 224, 448, 896, 1792, 3584, 7168, 14336, 28672, 57344, 114688, 229376, 458752, 917504, 1835008, 3670016, 7340032, 14680064, 29360128, 58720256, 117440512, 234881024, 469762048, 939524096, 1879048192, 3758096384
Offset: 0
Sequences of the form (2*m+1)*2^n:
A000079 (m=0),
A007283 (m=1),
A020714 (m=2), this sequence (m=3),
A005010 (m=4),
A005015 (m=5),
A005029 (m=6),
A110286 (m=7),
A110287 (m=8),
A110288 (m=9),
A175805 (m=10),
A248646 (m=11),
A164161 (m=12),
A175806 (m=13),
A257548 (m=15).
Row sums of (6, 1)-Pascal triangle
A093563 and of (1, 6)-Pascal triangle
A096956, n>=1.
A173786
Triangle read by rows: T(n,k) = 2^n + 2^k, 0 <= k <= n.
Original entry on oeis.org
2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 36, 40, 48, 64, 65, 66, 68, 72, 80, 96, 128, 129, 130, 132, 136, 144, 160, 192, 256, 257, 258, 260, 264, 272, 288, 320, 384, 512, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024, 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048
Offset: 0
Triangle begins as:
2;
3, 4;
5, 6, 8;
9, 10, 12, 16;
17, 18, 20, 24, 32;
33, 34, 36, 40, 48, 64;
65, 66, 68, 72, 80, 96, 128;
129, 130, 132, 136, 144, 160, 192, 256;
257, 258, 260, 264, 272, 288, 320, 384, 512;
513, 514, 516, 520, 528, 544, 576, 640, 768, 1024;
1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048;
-
[2^n + 2^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 07 2021
-
Flatten[Table[2^n + 2^m, {n,0,10}, {m, 0, n}]] (* T. D. Noe, Jun 18 2013 *)
-
A173786(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); 1 << c + 1 << (n - binomial(c + 1, 2)); }; \\ Antti Karttunen, Feb 29 2024, after David A. Corneth's PARI-program in A048645
-
from math import isqrt, comb
def A173786(n):
a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
return (1<Chai Wah Wu, Jun 20 2025
-
flatten([[2^n + 2^k for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 07 2021
A091629
Product of digits associated with A091628(n). Essentially the same as A007283.
Original entry on oeis.org
6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 1
Sequences of the form (2*m+1)*2^n:
A000079 (m=0),
A007283 (m=1),
A020714 (m=2),
A005009 (m=3),
A005010 (m=4),
A005015 (m=5),
A005029 (m=6),
A110286 (m=7),
A110287 (m=8),
A110288 (m=9),
A175805 (m=10),
A248646 (m=11),
A164161 (m=12),
A175806 (m=13),
A257548 (m=15).
A334101
Numbers of the form q*(2^k), where q is one of the Fermat primes and k >= 0; Numbers n for which A329697(n) == 1.
Original entry on oeis.org
3, 5, 6, 10, 12, 17, 20, 24, 34, 40, 48, 68, 80, 96, 136, 160, 192, 257, 272, 320, 384, 514, 544, 640, 768, 1028, 1088, 1280, 1536, 2056, 2176, 2560, 3072, 4112, 4352, 5120, 6144, 8224, 8704, 10240, 12288, 16448, 17408, 20480, 24576, 32896, 34816, 40960, 49152, 65537, 65792, 69632, 81920, 98304, 131074, 131584, 139264
Offset: 1
A110288
a(n) = 19*2^n.
Original entry on oeis.org
19, 38, 76, 152, 304, 608, 1216, 2432, 4864, 9728, 19456, 38912, 77824, 155648, 311296, 622592, 1245184, 2490368, 4980736, 9961472, 19922944, 39845888, 79691776, 159383552, 318767104, 637534208, 1275068416, 2550136832, 5100273664, 10200547328, 20401094656
Offset: 0
Sequences of the form (2*m+1)*2^n:
A000079 (m=0),
A007283 (m=1),
A020714 (m=2),
A005009 (m=3),
A005010 (m=4),
A005015 (m=5),
A005029 (m=6),
A110286 (m=7),
A110287 (m=8), this sequence (m=9),
A175805 (m=10),
A248646 (m=11),
A164161 (m=12),
A175806 (m=13),
A257548 (m=15).
A198275
a(n) = 17*2^n - 1.
Original entry on oeis.org
16, 33, 67, 135, 271, 543, 1087, 2175, 4351, 8703, 17407, 34815, 69631, 139263, 278527, 557055, 1114111, 2228223, 4456447, 8912895, 17825791, 35651583, 71303167, 142606335, 285212671, 570425343, 1140850687, 2281701375, 4563402751, 9126805503, 18253611007
Offset: 0
-
for j = 0 to 30 : print str$((17*2^j)-1)+", "; : next j
-
[17*2^n-1: n in [0..30]]; // Vincenzo Librandi, Oct 28 2011
-
A198275:=n->17*2^n-1; seq(A198275(n), n=0..30); # Wesley Ivan Hurt, Jun 11 2014
-
17*2^Range[0,30]-1 (* or *) LinearRecurrence[{3,-2},{16,33},40] (* Harvey P. Dale, Dec 03 2011 *)
A239303
Triangle of compressed square roots of Gray code * bit-reversal permutation.
Original entry on oeis.org
1, 3, 1, 6, 1, 5, 6, 9, 1, 10, 12, 18, 1, 17, 10, 12, 18, 33, 1, 34, 20, 24, 36, 66, 1, 65, 34, 20, 24, 36, 66, 129, 1, 130, 68, 40, 48, 72, 132, 258, 1, 257, 130, 68, 40, 48, 72, 132, 258, 513, 1, 514, 260, 136, 80
Offset: 1
Triangular array begins:
1
3 1
6 1 5
6 9 1 10
12 18 1 17 10
12 18 33 1 34 20
Square array begins:
1 3 6 6 12 12
1 1 9 18 18 36
5 1 1 33 66 66
10 17 1 1 129 258
10 34 65 1 1 513
20 34 130 257 1 1
The Walsh permutation wp(8,12,6,3) = (0,8,12,4, 6,14,10,2, 3,11,15,7, 5,13,9,1) permutes the natural ordered into the sequency ordered Walsh matrix of size 2^4.
Its square root is wp(6,9,1,10) = (0,6,9,15, 1,7,8,14, 10,12,3,5, 11,13,2,4).
So row 4 of the triangular array is (6,9,1,10).
A159026
a(0)=89; a(n) = a(n-1) + floor(sqrt(a(n-1))), n > 0.
Original entry on oeis.org
89, 98, 107, 117, 127, 138, 149, 161, 173, 186, 199, 213, 227, 242, 257, 273, 289, 306, 323, 340, 358, 376, 395, 414, 434, 454, 475, 496, 518, 540, 563, 586, 610, 634, 659, 684, 710, 736, 763, 790, 818, 846, 875, 904, 934, 964, 995, 1026, 1058, 1090, 1123, 1156, 1190
Offset: 0
Showing 1-8 of 8 results.
Comments