cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 190 results. Next

A032027 Number of planted planar trees (n+1 nodes) where any 2 subtrees extending from the same node are different.

Original entry on oeis.org

1, 1, 1, 3, 5, 13, 35, 95, 255, 715, 2081, 6003, 17645, 52127, 155863, 468129, 1415521, 4301055, 13134789, 40275109, 123970669, 382919917, 1186475687, 3686899725, 11487023793, 35876838669, 112304155021, 352276801491
Offset: 1

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Nov 15 2022: (Start)
The a(1) = 1 through a(6) = 13 ordered rooted identity trees (ranked by A358374):
  o  (o)  ((o))  ((o)o)   (((o))o)   (((o)o)o)
                 (o(o))   (((o)o))   ((o(o))o)
                 (((o)))  ((o(o)))   (o((o)o))
                          (o((o)))   (o(o(o)))
                          ((((o))))  ((((o)))o)
                                     ((((o))o))
                                     ((((o)o)))
                                     (((o))(o))
                                     (((o(o))))
                                     ((o)((o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
(End)
		

Crossrefs

The unordered version is A004111, ranked by A276625.
These trees (ordered rooted identity) are ranked by A358374.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],FreeQ[#,[_]?(!UnsameQ@@#&)]&]],{n,1,10}] (* Gus Wiseman, Nov 15 2022 *)
  • PARI
    AGK(v)={apply(p->subst(serlaplace(y^0*p),y,1), Vec(prod(k=1, #v, (1 + x^k*y + O(x*x^#v))^v[k])-1, -#v))}
    seq(n)={my(v=[1]); for(i=2, n, v=concat([1], AGK(v))); v} \\ Andrew Howroyd, Sep 20 2018

Formula

Shifts left under "AGK" (ordered, elements, unlabeled) transform.

A099323 Expansion of (sqrt(1+3*x) + sqrt(1-x))/(2*sqrt(1-x)).

Original entry on oeis.org

1, 1, 0, 1, -1, 3, -6, 15, -36, 91, -232, 603, -1585, 4213, -11298, 30537, -83097, 227475, -625992, 1730787, -4805595, 13393689, -37458330, 105089229, -295673994, 834086421, -2358641376, 6684761125, -18985057351, 54022715451, -154000562758, 439742222071, -1257643249140
Offset: 0

Views

Author

Paul Barry, Oct 12 2004

Keywords

Comments

Binomial transform is A072100.
Signed Motzkin numbers with an additional leading 1.
Inverse binomial transform of A001405 gives this without the initial 1. So does the binomial transform of (-1)^n*A000108(n) = [1,-1,2,-5,14,-42,...]. - Philippe Deléham, Mar 20 2007

Crossrefs

Programs

  • Magma
    A099323:= func< n | (&+[(-1)^k*Binomial(n-1, k)*Catalan(k): k in [0..n]]) >;
    [A099323(n): n in [0..40]]; // G. C. Greubel, Nov 25 2021
    
  • Maple
    with(PolynomialTools): CoefficientList(convert(taylor((sqrt(1 + 3*x) + sqrt(1 - x))/2/sqrt(1 - x), x = 0, 33), polynom), x); # Taras Goy, Aug 07 2017
  • Mathematica
    CoefficientList[Series[(Sqrt[1+3x]+Sqrt[1-x])/(2Sqrt[1-x]),{x,0,40}],x] (* Harvey P. Dale, Feb 06 2015 *)
  • Sage
    [sum((-1)^k*binomial(n-1, k)*catalan_number(k) for k in (0..n)) for n in (0..40)] # G. C. Greubel, Nov 25 2021

Formula

a(n) = 0^n + Sum_{k=0..n-1} binomial(n-1,k)*(-1)^k*C(k), where C(k) is the k-th Catalan number.
G.f.: 1 + x/(1-sqrt(x))/G(0), where G(k)= 1 + sqrt(x)/(1 - sqrt(x)/(1 + x/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 28 2013
D-finite with recurrence: n*a(n) + 2*(n-2)*a(n-1) + 3*(-n+2)*a(n-2) = 0. - R. J. Mathar, Oct 10 2014
a(n) ~ -(-1)^n * 3^(n + 1/2) / (8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 31 2017

Extensions

Edited by N. J. A. Sloane, Oct 05 2009

A358379 Edge-height (or depth) of the n-th standard ordered rooted tree.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 2, 1, 2, 3, 2, 2, 3, 2, 2, 1, 4, 2, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 1, 3, 4, 2, 2, 3, 3, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 1, 3, 3, 4, 4, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 2, 3, 3, 3, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The standard ordered rooted tree ranking begins:
  1: o        10: (((o))o)   19: (((o))(o))
  2: (o)      11: ((o)(o))   20: (((o))oo)
  3: ((o))    12: ((o)oo)    21: ((o)((o)))
  4: (oo)     13: (o((o)))   22: ((o)(o)o)
  5: (((o)))  14: (o(o)o)    23: ((o)o(o))
  6: ((o)o)   15: (oo(o))    24: ((o)ooo)
  7: (o(o))   16: (oooo)     25: (o(oo))
  8: (ooo)    17: ((((o))))  26: (o((o))o)
  9: ((oo))   18: ((oo)o)    27: (o(o)(o))
For example, the 52nd ordered tree is (o((o))oo) so a(52) = 3.
		

Crossrefs

Records occur at A004249.
The triangle counting trees by this statistic is A080936, unordered A034781.
Unordered version is A109082, nodes A061775, leaves A109129, edges A196050.
Leaves are counted by A358371.
Nodes are counted by A358372.
Node-height is a(n) + 1, unordered version is A358552.
A000081 counts unordered rooted trees, ranked by A358378.
A000108 counts ordered rooted trees.
A001263 counts ordered rooted trees by leaves.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Table[Depth[srt[n]]-2,{n,100}]

A279944 Number of positions in the free pure symmetric multifunction in one symbol with j-number n.

Original entry on oeis.org

1, 3, 5, 5, 7, 7, 9, 4, 7, 9, 11, 6, 9, 11, 13, 7, 8, 11, 13, 15, 9, 10, 13, 15, 9, 17, 6, 11, 12, 15, 17, 6, 11, 19, 8, 9, 13, 14, 17, 19, 8, 13, 21, 10, 11, 15, 16, 19, 11, 21, 10, 15, 23, 12, 13, 17, 18, 21, 13, 23, 12, 17, 25, 7, 14, 15, 19, 20, 23, 15, 25, 14, 19, 27, 9, 16, 17, 21, 22, 25, 9, 17, 27, 16, 21, 29, 11, 18, 19, 23, 24, 27, 11, 19, 29, 18, 23, 31, 13, 11
Offset: 1

Views

Author

Gus Wiseman, Dec 24 2016

Keywords

Comments

A free pure symmetric multifunction in one symbol f in PSM(x) is either (case 1) f = the symbol x, or (case 2) f = an expression of the form h[g_1,...,g_k] where h is in PSM(x), each of the g_i for i=1..(k>0) is in PSM(x), and for i < j we have g_i <= g_j under a canonical total ordering of PSM(x), such as the Mathematica ordering of expressions. For a positive integer n we define a free pure symmetric multifunction j(n) by: j(1)=x; j(n>1) = j(h)[j(g_1),...,j(g_k)] where n = r(h)^(p(g_1)*...*p(g_k)-1). Here r(n) is the n-th number that is not a perfect power (A007916) and p(n) is the n-th prime number (A000040). See example. Then a(n) is the number of brackets [...] plus the number of x's in j(n).

Examples

			The first 20 free pure symmetric multifunctions in x are:
j(1)  = j(1)            = x
j(2)  = j(1)[j(1)]      = x[x]
j(3)  = j(2)[j(1)]      = x[x][x]
j(4)  = j(1)[j(2)]      = x[x[x]]
j(5)  = j(3)[j(1)]      = x[x][x][x]
j(6)  = j(4)[j(1)]      = x[x[x]][x]
j(7)  = j(5)[j(1)]      = x[x][x][x][x]
j(8)  = j(1)[j(1),j(1)] = x[x,x]
j(9)  = j(2)[j(2)]      = x[x][x[x]]
j(10) = j(6)[j(1)]      = x[x[x]][x][x]
j(11) = j(7)[j(1)]      = x[x][x][x][x][x]
j(12) = j(8)[j(1)]      = x[x,x][x]
j(13) = j(9)[j(1)]      = x[x][x[x]][x]
j(14) = j(10)[j(1)]     = x[x[x]][x][x][x]
j(15) = j(11)[j(1)]     = x[x][x][x][x][x][x]
j(16) = j(1)[j(3)]      = x[x[x][x]]
j(17) = j(12)[j(1)]     = x[x,x][x][x]
j(18) = j(13)[j(1)]     = x[x][x[x]][x][x]
j(19) = j(14)[j(1)]     = x[x[x]][x][x][x][x]
j(20) = j(15)[j(1)]     = x[x][x][x][x][x][x][x].
		

Crossrefs

Cf. A279984 (numbers j(n)[x]=j(prime(n))), A277576 (numbers j(n)=x[x][x][x]...), A058891 (numbers j(n)=x[x,...,x]), A279969 (numbers j(n)=x[x[...[x]]]).

Programs

  • Mathematica
    nn=100;
    radQ[n_]:=If[n===1,False,SameQ[GCD@@FactorInteger[n][[All,2]],1]];
    rad[n_]:=rad[n]=If[n===0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
    Set@@@Array[radPi[rad[#]]==#&,nn];
    jfac[n_]:=With[{g=GCD@@FactorInteger[n+1][[All,2]]},JIX[radPi[Power[n+1,1/g]],Flatten[Cases[FactorInteger[g+1],{p_,k_}:>ConstantArray[PrimePi[p],k]]]]];
    diwt[n_]:=If[n===1,1,Apply[1+diwt[#1]+Total[diwt/@#2]&,jfac[n-1]]];
    Array[diwt,nn]

Formula

a(A007916(h)^(A000040(g_1)*...*A000040(g_k)-1)) = 1 + a(h) + a(g_1) + ... + a(g_k).

A114997 Number of ordered trees with n edges and no unary or binary nodes.

Original entry on oeis.org

0, 0, 1, 1, 1, 4, 8, 13, 31, 71, 144, 318, 729, 1611, 3604, 8249, 18803, 42907, 98858, 228474, 528735, 1228800, 2865180, 6693712, 15676941, 36807239, 86584783, 204060509, 481823778, 1139565120, 2699329341, 6403500057, 15211830451, 36183117255, 86171536894, 205459894230, 490417795075
Offset: 1

Views

Author

Nachum Dershowitz, Feb 23 2006

Keywords

Comments

Also counts sequences of n natural numbers, excluding 1 and 2, such that the sum of every prefix is no more than its length.
a(n) is the number of Dyck paths of semilength n with all ascents of length >= 3. For example, a(6) = 4 counts U^6.D^6, U^3.D.U^3.D^5, U^3.D^2.U^3.D^4, U^3.D^3.U^3.D^3 where ^ denotes repetition and a dot denotes concatenation. - David Callan, Dec 08 2021

Crossrefs

Cf. A000108 (rev. of x/(1+1*Sum_{k>=1} x^k) ), A005043 (rev. of x/(1+x*Sum_{k>=1} x^k) ), A215341 (rev. of x/(1+x^3*Sum_{k>=1} x^k) ).

Programs

  • Maple
    eq := x^3*A^3+x*A^2-(1+x)*A+1 = 0: A := RootOf(eq, A): Aser := series(A, x = 0, 40): seq(coeff(Aser, x, n), n = 1 .. 38); # Emeric Deutsch, Jan 13 2015
  • Mathematica
    Table[Sum[1/(n+1)*Binomial[n+1,k]*Binomial[2*k-n-3,n-k],{k,Ceiling[(n+3)/2],n}],{n,1,20}] (* Vaclav Kotesovec, Mar 22 2014 *)
  • PARI
    a(n)=sum(k=ceil((n+3)/2), n, (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)) ); \\ Joerg Arndt, Aug 19 2012
    
  • PARI
    N=66; gf=serreverse(x/(1+x^2*sum(k=1,N,x^k))+O(x^N)) / x;
    /* = 1 + x^3 + x^4 + x^5 + 4*x^6 + 8*x^7 + 13*x^8 + 31*x^9 + ... */
    v114997=Vec(gf) /* = [1, 0, 0, 1, 1, 1, 4, 8, 13, 31, ...] */  \\ Joerg Arndt, Aug 19 2012

Formula

a(n) = Sum_{(n+3)/2 <= k <= n} (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)).
If A(x) is the g.f. for the sequence with a(0)=1, then x^3*A^3+x*A^2-(1 + x)*A+1 = 0. - Emeric Deutsch, Jan 13 2015
Let A(x) be the g.f. for the sequence with a(0)=1, then x*A(x) is the reversion of x/(1+x^2*sum(k>=1,x^k)). - Joerg Arndt, Aug 19 2012 (proved by Emeric Deutsch, Jan 13 2015)
Recurrence: (n+1)*(n+2)*(28*n^2 - 38*n - 15)*a(n) = -4*(n+1)*(14*n^3 - 12*n^2 + 7*n - 15)*a(n-1) + (n-2)*(140*n^3 + 90*n^2 - 221*n + 45)*a(n-2) + 6*(n-2)*(28*n^3 - 24*n^2 - 75*n + 95)*a(n-3) + 23*(n-3)*(n-2)*(28*n^2 + 18*n - 25)*a(n-4). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ c / (n^(3/2) * r^n), where r = (4*sqrt(2) - 3 + 23*sqrt((344*sqrt(2))/529 - 235/529))/46 = 0.402505948621022106992... is the root of the equation 23*r^4+6*r^3+5*r^2-2*r-1 = 0 and c = sqrt((280 + 133*sqrt(2) - 25*sqrt(14*(11 + 8*sqrt(2)))) / (7*Pi))/4 = 0.273007516... - Vaclav Kotesovec, Mar 22 2014, updated Jan 14 2015

Extensions

Offset set to 1 by Joerg Arndt, Aug 19 2012

A358378 Numbers k such that the k-th standard ordered rooted tree is fully canonically ordered (counted by A000081).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 25, 27, 29, 31, 32, 37, 41, 43, 49, 53, 57, 59, 61, 63, 64, 65, 73, 81, 85, 101, 105, 107, 113, 117, 121, 123, 125, 127, 128, 129, 137, 145, 165, 169, 171, 193, 201, 209, 213, 229, 233, 235, 241, 245, 249, 251
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2022

Keywords

Comments

The ordering of finitary multisets is first by length and then lexicographically. This is also the ordering used for Mathematica expressions.
We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The terms together with their corresponding ordered rooted trees begin:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: (o(o))
   8: (ooo)
   9: ((oo))
  11: ((o)(o))
  13: (o((o)))
  15: (oo(o))
  16: (oooo)
  17: ((((o))))
  21: ((o)((o)))
		

Crossrefs

These trees are counted by A000081.
A358371 and A358372 count leaves and nodes in standard ordered rooted trees.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[1000],FreeQ[srt[#],[_]?(!OrderedQ[#]&)]&]

A007971 INVERTi transform of central trinomial coefficients (A002426).

Original entry on oeis.org

0, 1, 2, 2, 4, 8, 18, 42, 102, 254, 646, 1670, 4376, 11596, 31022, 83670, 227268, 621144, 1706934, 4713558, 13072764, 36398568, 101704038, 285095118, 801526446, 2259520830, 6385455594, 18086805002, 51339636952, 146015545604
Offset: 0

Views

Author

David Dumas (dumas(AT)TCNJ.EDU)

Keywords

Comments

Number of paths of a walk on the integers, allowing steps of size 0, +1, and -1, which return to the starting point for the first time at time n. [David P. Sanders (dps(AT)fciencias.unam.mx), May 04 2009]

Examples

			G.f. = x + 2*x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 18*x^6 + 42*x^7 + 102*x^8 + 254*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1-Sqrt[1-2x-3x^2],{x,0,40}],x] (* Harvey P. Dale, Dec 17 2012 *)
    a[1]:=1;a[2]:=2;a[n_]:=a[n]=1/2 Sum[a[k] a[n-k],{k,1,n-1}];
    Join[{0},Map[a,Range[24]]] (* Oliver Seipel, Nov 03 2024, after Schröder 1870 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(1 - sqrt(1 - 2*x - 3*x^2))) \\ G. C. Greubel, Feb 26 2017

Formula

A002426(n) = Sum_{i=1..n} a(i)*A002426(n-i), n>0. - Michael Somos, Jun 14 2000
G.f.: 1 - sqrt(1 - 2*x - 3*x^2). - Michael Somos, Jun 14 2000
a(0)=0, a(1)=1, a(2)=2, then a(n) = (1/2) *(a(1)*a(n-1)+a(2)*a(n-2)+....+a(n-1)*a(1)). - Benoit Cloitre, Oct 24 2003
a(n) = 2^(1-n)*Sum_{k=1..n} (binomial(k,n-k)*A000108(k-1)*3^(n-k)), n>0. - Vladimir Kruchinin, Feb 05 2011
G.f.: 1-sqrt(1-2*x-3*(x^2)) = x/G(0) ; G(k) = 1-2*x/(1+x/(1+x/(1-2*x/(1-x/(2-x/G(k+1)))))) ; (continued fraction). - Sergei N. Gladkovskii, Dec 11 2011
a(n+2) = 2 * A001006(n). - Michael Somos, Jun 14 2000
For n>1, a(n) = 2 * (A005043(n-1) + A005043(n-2)). - Ralf Stephan, Jul 06 2003
0 = a(n) * (9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1) * (-3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2) * (a(n+2) + a(n+3)) for all n>0. - Michael Somos, Jan 25 2014
n*a(n) + (-2*n+3)*a(n-1) + *(-n+3)*a(n-2) = 0. - R. J. Mathar, Sep 06 2016

Extensions

Name corrected by Michael Somos, Mar 23 2012

A039717 Row sums of convolution triangle A030523.

Original entry on oeis.org

1, 4, 15, 55, 200, 725, 2625, 9500, 34375, 124375, 450000, 1628125, 5890625, 21312500, 77109375, 278984375, 1009375000, 3651953125, 13212890625, 47804687500, 172958984375, 625771484375, 2264062500000, 8191455078125
Offset: 1

Views

Author

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 5.
With offset 0 = INVERT transform of A001792: (1, 3, 8, 20, 48, 112, ...). - Gary W. Adamson, Oct 26 2010
From Tom Copeland, Nov 09 2014: (Start)
The array belongs to a family of arrays associated to the Catalan A000108 (t=1), and Riordan, or Motzkin sums A005043 (t=0), with the o.g.f. (1-sqrt(1-4x/(1+(1-t)x)))/2 and inverse x*(1-x)/(1 + (t-1)*x*(1-x)). See A091867 for more info on this family. Here t = -4 (mod signs in the results).
Let C(x) = (1 - sqrt(1-4x))/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1+t*x) with inverse P(x,-t).
O.g.f.: G(x) = x*(1-x)/(1 - 5x*(1-x)) = P(Cinv(x),-5).
Inverse O.g.f.: Ginv(x) = (1 - sqrt(1 - 4*x/(1+5x)))/2 = C(P(x,5)) (signed A026378). Cf. A030528. (End)
p-INVERT of (2^n), where p(s) = 1 - s - s^2; see A289780. - Clark Kimberling, Aug 10 2017

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x) / (1 - 5 x + 5 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
  • PARI
    Vec(x*(1-x)/(1-5*x+5*x^2) + O(x^40)) \\ Altug Alkan, Nov 20 2015

Formula

G.f.: x*(1-x)/(1-5*x+5*x^2) = g1(3, x)/(1-g1(3, x)), g1(3, x) := x*(1-x)/(1-2*x)^2 (g.f. first column of A030523).
From Paul Barry, Apr 16 2004: (Start)
Binomial transform of Fibonacci(2n+2).
a(n) = (sqrt(5)/2 + 5/2)^n*(3*sqrt(5)/10 + 1/2) - (5/2 - sqrt(5)/2)^n*(3*sqrt(5)/10 - 1/2). (End)
a(n) = (1/5)*Sum_{r=1..9} sin(3*r*Pi/10)*sin(r*Pi/2)*(2*cos(r*Pi/10))^(2*n).
a(n) = 5*a(n-1) - 5*a(n-2).
a(n) = Sum_{k=0..n} Sum_{i=0..n} binomial(n, i)*binomial(k+i+1, 2k+1). - Paul Barry, Jun 22 2004
From Johannes W. Meijer, Jul 01 2010: (Start)
Limit_{k->oo} a(n+k)/a(k) = (A020876(n) + A093131(n)*sqrt(5))/2.
Limit_{n->oo} A020876(n)/A093131(n) = sqrt(5).
(End)
From Benito van der Zander, Nov 19 2015: (Start)
Limit_{k->oo} a(k+1)/a(k) = 1 + phi^2 = (5 + sqrt(5)) / 2.
a(n) = a(n-1) * 3 + A081567(n-2) (not proved).
(End)
E.g.f.: exp(x*5/2) * (cosh(x*sqrt(5)/2) + (3/sqrt(5))*sinh(x*sqrt(5)/2)). - Fabian Pereyra, Oct 29 2024

A100754 Triangle read by rows: T(n, k) = number of hill-free Dyck paths (i.e., no peaks at height 1) of semilength n and having k peaks.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 13, 29, 13, 1, 1, 19, 73, 73, 19, 1, 1, 26, 151, 266, 151, 26, 1, 1, 34, 276, 749, 749, 276, 34, 1, 1, 43, 463, 1781, 2762, 1781, 463, 43, 1, 1, 53, 729, 3758, 8321, 8321, 3758, 729, 53, 1, 1, 64, 1093, 7253, 21659, 31004, 21659, 7253, 1093, 64, 1
Offset: 2

Views

Author

Emeric Deutsch, Jan 14 2005

Keywords

Comments

Row n has n - 1 terms. Row sums yield the Fine numbers (A000957).
Related to the number of certain sets of non-crossing partitions for the root system A_n (p. 11, Athanasiadis and Savvidou). - Tom Copeland, Oct 19 2014
T(n,k) is the number of permutations pi of [n-1] with k - 1 descents such that s(pi) avoids the patterns 132, 231, and 312, where s is West's stack-sorting map. - Colin Defant, Sep 16 2018
The absolute values of the polynomials at -1 and j (cube root of 1) seem to be given by A126120 and A005043. - F. Chapoton, Nov 16 2021
Don Knuth observes that this sequence also arrises from the enumeration of restricted max-and-min-closed relations, only there it appears as an array read by antidiagonals: see the Knuth "Notes" link and A372068. Knuth also gives a formula expressing the array A372368 in terms of this array. He also reports that there is strong experimental evidence that the n-th term of row m in this array is a polynomial of degree 2*m-2 in n. - N. J. A. Sloane, May 12 2024

Examples

			T(4, 2) = 4 because we have UU*DDUU*DD, UU*DUU*DDD, UUU*DDU*DD and UUU*DU*DDD, where U = (1, 1), D = (1,-1) and * indicates the peaks.
Triangle starts:
   1;
   1,  1;
   1,  4,   1;
   1,  8,   8,    1;
   1, 13,  29,   13,    1;
   1, 19,  73,   73,   19,    1;
   1, 26, 151,  266,  151,   26,    1;
   1, 34, 276,  749,  749,  276,   34,   1;
   1, 43, 463, 1781, 2762, 1781,  463,  43,  1;
   1, 53, 729, 3758, 8321, 8321, 3758, 729, 53, 1;
   ...
As an array (for which the rows of the preceding triangle are the antidiagonals):
   1,  1,    1,     1,      1,      1,       1,        1,        1, ...
   1,  4,    8,    13,     19,     26,      34,       43,       53, ...
   1,  8,   29,    73,    151,    276,     463,      729,     1093, ...
   1, 13,   73,   266,    749,   1781,    3758,     7253,    13061, ...
   1, 19,  151,   749,   2762,   8321,   21659,    50471,   107833, ...
   1, 26,  276,  1781,   8321,  31004,   97754,   271125,   679355, ...
   1, 34,  463,  3758,  21659,  97754,  367285,  1196665,  3478915, ...
   1, 43,  729,  7253,  50471, 271125, 1196665,  4526470, 15118415, ...
   1, 53, 1093, 13061, 107833, 679355, 3478915, 15118415, 57500480, ...
   ...
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> add((j/(n-j))*binomial(n-j, k-j)*binomial(n-j,k), j=0..min(k,n-k)): for n from 2 to 13 do seq(T(n, k), k = 1..n-1) od; # yields the sequence in triangular form
  • Mathematica
    T[n_, k_] := Sum[(j/(n-j))*Binomial[n-j, k-j]*Binomial[n-j, k], {j, 0, Min[k, n-k]}]; Table[T[n, k], {n, 2, 13}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

T(n, k) = Sum_{j=0..min(k, n-k)} (j/(n-j)) * C(n-j, k-j) * C(n-j, k), n >= 2.
G.f.: t*z*r/(1 - t*z*r), where r = r(t, z) is the Narayana function defined by r = z*(1 + r)*(1 + t*r).
From Tom Copeland, Oct 19 2014: (Start)
With offset 0 for A108263 and offset 1 for A132081, row polynomials of this entry P(n, x) = Sum_{i} A108263(n, i)*x^i*(1 + x)^(n - 2*i) = Sum_{i} A132081(n - 2, i)*x^i*(1 + x)^(n - 2*i).
E.g., P(4, x) = 1*x*(1 + x)^(4 - 2*1) + 2*x^2*(1 + x)^(4 - 2*2) = x + 4*x^2 + x^3.
Equivalently, let Q(n, x) be the row polynomials of A108263. Then P(n, x) = (1 + x)^n * Q(n, x/(1 + x)^2).
E.g., P(4, x) = (1 + x)^4 * (x/(1 + x)^2 + 2 * (x/(1 + x)^2)^2).
See Athanasiadis and Savvidou (p. 7). (End)

A104597 Triangle T read by rows: inverse of Motzkin triangle A097609.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, -1, -2, 0, 1, 0, -2, -3, 0, 1, 1, 1, -3, -4, 0, 1, 1, 4, 3, -4, -5, 0, 1, 0, 3, 9, 6, -5, -6, 0, 1, -1, -2, 5, 16, 10, -6, -7, 0, 1, -1, -6, -9, 6, 25, 15, -7, -8, 0, 1, 0, -4, -18, -24, 5, 36, 21, -8, -9, 0, 1, 1, 3, -7, -39, -50, 1, 49, 28, -9, -10, 0, 1, 1, 8
Offset: 0

Views

Author

Ralf Stephan, Mar 17 2005

Keywords

Comments

Riordan array ((1-x)/(1-x+x^2),x(1-x)/(1-x+x^2)). - Paul Barry, Jun 21 2008

Examples

			1
0,1
-1,0,1
-1,-2,0,1
0,-2,-3,0,1
1,1,-3,-4,0,1
1,4,3,-4,-5,0,1
0,3,9,6,-5,-6,0,1
-1,-2,5,16,10,-6,-7,0,1
-1,-6,-9,6,25,15,-7,-8,0,1
		

Crossrefs

Row sums are A009116 with different signs.
Row sums are A146559(n).

Programs

  • Maple
    # Uses function InvPMatrix from A357585. Adds column 1, 0, 0, ... to the left.
    InvPMatrix(10, n -> A005043(n-1)); # Peter Luschny, Oct 09 2022
  • Maxima
    T(n,m):=sum(binomial(m,j)*sum(binomial(k,n-k)*(-1)^(n-k)*binomial(k+j-1,j-1),k,0,n)*(-1)^(m-j),j,0,m); /* Vladimir Kruchinin, Apr 08 2011 */

Formula

T(n,m) = sum(j=0..m, binomial(m,j)*sum(k=0..n, binomial(k,n-k)*(-1)^(n-k)*binomial(k+j-1,j-1))*(-1)^(m-j)). - Vladimir Kruchinin, Apr 08 2011
T(n,m) = sum(k=ceiling((n-m-1)/2)..n-m, binomial(k+m,m)*binomial(k+1,n-k-m)*(-1)^(n-k-m)). - Vladimir Kruchinin, Dec 17 2011
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Feb 20 2013
T(n+5,n) = (n+1)^2. - Philippe Deléham, Feb 20 2013
From Tom Copeland, Nov 04 2014: (Start)
O.g.f.: G(x,t) = Pinv[Cinv(x),t+1] = Cinv(x) / [1 - (t+1)Cinv(x)] = x*(1-x) / [1-(t+1)x(1-x)] = x + t * x^2 + (-1 + t^2) * x^3 + ..., where Cinv(x)= x * (1-x) is the inverse of C(x) = [1-sqrt(1-4*x)]/2, an o.g.f. for the Catalan numbers A000108 and Pinv(x,t) = -P(-x,t) = x/(1-t*x) is the inverse of P(x,t) = x/(1+x*t).
Ginv(x,t)= C[P[x,t+1]]= C[x/(1+(t+1)x)] = {1-sqrt[1-4*x/(1+(t+1)x)]}/2.
The inverse in x of G(x,t) with t replaced by -t is the o.g.f. of A091867, and G(x,t-1) is a signed version of the (mirrored) Fibonacci polynomials A030528. (End)
Previous Showing 51-60 of 190 results. Next