cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 126 results. Next

A137288 Numbers k such that 2*prime(k)-1 is prime.

Original entry on oeis.org

1, 2, 4, 8, 11, 12, 22, 25, 34, 37, 46, 47, 50, 58, 63, 67, 68, 73, 75, 85, 95, 101, 106, 110, 111, 114, 121, 125, 129, 141, 145, 151, 159, 163, 168, 169, 180, 193, 203, 207, 211, 222, 226, 232, 242, 254, 258, 260, 274, 285
Offset: 1

Views

Author

Ctibor O. Zizka, Apr 05 2008

Keywords

Examples

			k=11: 2*prime(11) - 1 = 2*31 - 1 = 61 is prime, so k=11 belongs to the sequence.
		

Crossrefs

Cf. A000040, A005382 (corresponding primes).

Programs

  • Mathematica
    Select[Range[285],PrimeQ[2Prime[#]-1]&] (* James C. McMahon, May 22 2025 *)

Extensions

More terms from Paolo P. Lava, Apr 15 2008

A105657 Numbers n such that p1=2n+3, p2=4n+5, p3=6n+7, p4=8n+9, p5=10n+11, p6=12n+13, p7=14n+15 and p8=16n+17 are all prime.

Original entry on oeis.org

256409, 11120339, 13243229, 49798979, 296504669, 510578774, 520649219, 640598279, 674992499, 713074004, 830453714, 947378984
Offset: 1

Views

Author

Zak Seidov, Apr 16 2005

Keywords

Crossrefs

A109998 Non-Cunningham primes: primes isolated from any Cunningham chain under any iteration of 2p+-1 or (p+-1)/2.

Original entry on oeis.org

17, 43, 67, 71, 101, 103, 109, 127, 137, 149, 151, 163, 181, 197, 223, 241, 257, 269, 283, 311, 317, 349, 353, 373, 389, 401, 409, 433, 449, 461, 463, 487, 521, 523, 557, 569, 571, 599, 617, 631, 643, 647, 677, 701, 709, 739, 751, 769, 773, 787, 797, 821
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 01 2005

Keywords

Comments

The condition that neither 2p - 1 nor 2p + 1 be prime is equivalent to ((p-1) mod 3 = 0) or ((p+1) mod 3 = 0). For example, the prime p = 2^607 - 1 is not in this sequence because p + 1 mod 3 = 2. - Washington Bomfim, Oct 30 2009

Examples

			a(1) = 17 is here because 17 * 2 + 1 = 35, 17 * 2 - 1 = 33; (17+1)/2 = 9, (17-1)/2 = 8: four composite numbers.
		

Crossrefs

Programs

  • Mathematica
    nonCunninghamPrimes = {}; Do[p = Prime[n]; If[!PrimeQ[2p - 1] && !PrimeQ[2p + 1] && !PrimeQ[(p - 1)/2] && !PrimeQ[(p + 1)/2], AppendTo[nonCunninghamPrimes, p]], {n, 6!}]; nonCunninghamPrimes (* Vladimir Joseph Stephan Orlovsky, Mar 22 2009 *)

Extensions

Corrected and extended by Ray Chandler, Sep 02 2005
Replaced link to cached arXiv URL with link to the abstract - R. J. Mathar, Mar 01 2010

A121014 Nonprime terms in A121912.

Original entry on oeis.org

1, 6, 9, 10, 15, 18, 30, 33, 45, 55, 90, 91, 99, 165, 246, 259, 370, 385, 451, 481, 495, 505, 561, 657, 703, 715, 909, 1035, 1045, 1105, 1233, 1626, 1729, 2035, 2409, 2465, 2821, 2981, 3333, 3367, 3585, 4005, 4141, 4187, 4521, 4545, 5005, 5461, 6533, 6541
Offset: 1

Views

Author

N. J. A. Sloane, Sep 06 2006

Keywords

Comments

Theorem: If both numbers q and 2q-1 are primes (q is in the sequence A005382) and n=q*(2q-1) then 10^n == 10 (mod n) (n is in the sequence A121014) iff q<5 or mod(q, 20) is in the set {1, 7, 19}. 6,15,91,703,12403,38503,79003,188191,269011,... are such terms. A005939 is a subsequence of this sequence. - Farideh Firoozbakht, Sep 15 2006

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], ! PrimeQ[ # ] && PowerMod[10, #, # ] == Mod[10, # ] &] (* Ray Chandler, Sep 06 2006 *)
  • PARI
    for(n=1,7000,if(!isprime(n),k=10^n;if((k-10)%n==0,print1(n,",")))) \\ Klaus Brockhaus, Sep 06 2006

Formula

Theorem: If both numbers q and 2q-1 are primes and n=q*(2q-1) then 10^n == 10 (mod n) (n is in the sequence) iff q<5 or mod(q, 20) is in the set {1, 7, 19}. - Farideh Firoozbakht, Sep 11 2006

Extensions

Extended by Ray Chandler and Klaus Brockhaus, Sep 06 2006

A122786 Nonprimes n such that 9^n == 9 (mod n).

Original entry on oeis.org

1, 4, 6, 8, 9, 12, 15, 18, 24, 28, 36, 45, 52, 66, 72, 91, 121, 153, 205, 276, 286, 364, 366, 369, 396, 435, 511, 532, 561, 616, 671, 697, 703, 726, 804, 946, 949, 1035, 1036, 1105, 1128, 1288, 1387, 1541, 1729, 1737, 1845, 1854, 1891, 2196, 2465, 2501, 2556, 2665
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 12 2006

Keywords

Comments

Theorem: If both numbers q and 2q-1 are primes and n=q*(2q-1) then 9^n==9 (mod n) (n is in the sequence). So A005382*(2*A005382-1)= 6,15,91,703,1891,2701,12403,18721,... is the related subsequence. A020138 is a subsequence of this sequence.

Crossrefs

Programs

  • Maple
    q:= n-> is(not isprime(n) and (9 &^ n mod n) = (9 mod n)):
    select(q, [$1..3000])[];  # Alois P. Heinz, Mar 06 2019
  • Mathematica
    Select[Range[4000], ! PrimeQ[ # ] && Mod[9^#, # ] == Mod[9, # ] &]
    Join[{1,4,6,8,9},Select[Range[3000],CompositeQ[#]&&PowerMod[9,#,#]==9&]] (* Harvey P. Dale, Jul 17 2014 *)
  • PARI
    isok(n) = !isprime(n) && (Mod(9,n)^n == Mod(9, n)); \\ Michel Marcus, Mar 06 2019

A158017 Primes p such that 10*p-1 is also prime.

Original entry on oeis.org

2, 3, 11, 23, 41, 71, 83, 101, 107, 113, 149, 167, 179, 227, 239, 269, 311, 317, 347, 353, 389, 479, 491, 521, 557, 569, 587, 647, 653, 683, 809, 821, 827, 839, 863, 911, 977, 983, 1091, 1229, 1259, 1283, 1289, 1301, 1367, 1373, 1439, 1487, 1493, 1607, 1619
Offset: 1

Views

Author

Roger L. Bagula, Mar 11 2009

Keywords

Comments

The family of prime sequences that generate primes k*p-1 for k = 2, 4, 6, 8, ... also comprises A005382 (k=2), A062737 (k=4), A158015 (k=6), and A158016 (k=8).

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000)|IsPrime(10*p-1)] // Vincenzo Librandi, Jan 29 2011
  • Mathematica
    Flatten[Table[If[PrimeQ[n] && PrimeQ[10*n - 1], n, {}], {n, 1, 10000}]]
    Select[Prime[Range[600]], PrimeQ[(10 # - 1)]&] (* Vincenzo Librandi, Apr 14 2013 *)

A171517 Primes p such that 2*p+11 is prime.

Original entry on oeis.org

3, 13, 31, 43, 73, 109, 151, 163, 181, 193, 199, 211, 223, 283, 331, 349, 373, 379, 409, 421, 433, 463, 499, 541, 571, 601, 613, 619, 643, 709, 739, 769, 823, 829, 883, 991, 1009, 1021, 1039, 1051, 1063, 1129, 1213, 1231, 1291, 1303, 1423, 1453, 1471, 1549
Offset: 1

Views

Author

Keywords

Examples

			2*3+11=17, which is prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1600) | IsPrime(2*p+11)]; // Vincenzo Librandi, Apr 27 2014
  • Mathematica
    Select[Prime[Range[6! ]],PrimeQ[2*#+11]&]

A286257 Compound filter: a(n) = P(A046523(n), A046523(2n-1)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 5, 14, 12, 27, 5, 86, 14, 27, 23, 90, 12, 84, 27, 152, 23, 148, 5, 148, 27, 27, 80, 324, 25, 61, 44, 148, 23, 495, 5, 935, 61, 27, 61, 702, 5, 142, 61, 324, 138, 495, 23, 148, 90, 61, 23, 1426, 14, 265, 27, 90, 467, 324, 27, 430, 27, 61, 80, 2140, 12, 61, 183, 2144, 61, 495, 23, 607, 27, 495, 23, 2998, 23, 142, 90, 90, 142, 625, 5, 1426, 226, 27, 467
Offset: 1

Views

Author

Antti Karttunen, May 07 2017

Keywords

Crossrefs

Cf. A005382 (gives the positions of 5's), A067756 (of 12's), A234098 (of 23's).

Programs

  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286257(n) = (1/2)*(2 + ((A046523(n)+A046523((2*n)-1))^2) - A046523(n) - 3*A046523((2*n)-1));
    for(n=1, 10000, write("b286257.txt", n, " ", A286257(n)));
    
  • Python
    from sympy import factorint
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(a046523(n), a046523(2*n - 1)) # Indranil Ghosh, May 07 2017
  • Scheme
    (define (A286257 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A046523 (+ -1 n n))) 2) (- (A046523 n)) (- (* 3 (A046523 (+ -1 n n)))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A046523((2*n)-1))^2) - A046523(n) - 3*A046523((2*n)-1)).
a(n) = (1/2)*(2 + ((A046523(n)+A278223(n))^2) - A046523(n) - 3*A278223(n)).

A298758 Numbers k such that both k and 2k-1 are Poulet numbers (Fermat pseudoprimes to base 2).

Original entry on oeis.org

15709, 65281, 20770621, 104484601, 112037185, 196049701, 425967301, 2593182901, 16923897871, 32548281361, 45812984491, 52035130951, 55897227751, 82907336737, 90003640021, 92010062101, 138016057141, 204082130071, 310026150211, 620006892121, 622333751509
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2018

Keywords

Comments

2*a(n) - 1 = A303531(n) belongs to A217465. - Max Alekseyev, Apr 24 2018
Numbers k such that both k and 2k+1 are Poulet numbers are listed in A303447.
If p is a prime such that 2*p-1 is also a prime (A005382) and k = (2^(2*p-1)+1)/3 and 2*k-1 are both composites, then k is a term of this sequence (Rotkiewicz, 2000). - Amiram Eldar, Nov 09 2023

Crossrefs

Subsequence of A001567.

Programs

  • Mathematica
    s = Import["b001567.txt", "Data"][[All, -1]]; n = Length[s];
    aQ[n_] := ! PrimeQ[n] && PowerMod[2, (n - 1), n] == 1;
    a = {}; Do[p = 2*s[[k]] - 1; If[aQ[p], AppendTo[a, s[[k]]]], {k, 1, n}]; a (* using the b-File from A001567 *)
  • PARI
    isP(n) = (Mod(2, n)^n==2) && !isprime(n) && (n>1);
    isok(n) = isP(n) && isP(2*n-1); \\ Michel Marcus, Mar 09 2018

A307390 Primes p such that 2*p-1 is not prime.

Original entry on oeis.org

5, 11, 13, 17, 23, 29, 41, 43, 47, 53, 59, 61, 67, 71, 73, 83, 89, 101, 103, 107, 109, 113, 127, 131, 137, 149, 151, 163, 167, 173, 179, 181, 191, 193, 197, 223, 227, 233, 239, 241, 251, 257, 263, 269, 277, 281, 283, 293, 311, 313, 317, 347, 349, 353, 359, 373, 383, 389, 397, 401, 409, 419, 421
Offset: 1

Views

Author

Robert Israel, Apr 17 2019

Keywords

Comments

Primes not in A005382.

Examples

			a(3) = 13 is in the sequence because 13 is prime but 2*13-1 = 25 is not.
		

Crossrefs

Includes A007528.

Programs

  • Maple
    select(t -> isprime(t) and not isprime(2*t-1), [seq(i,i=3..1000,2)]);

Formula

a(n) = A109274(n) + 1. - Bhavik Mehta, Aug 14 2024
Previous Showing 41-50 of 126 results. Next