cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A098000 Number of outerplanar graphs on n labeled nodes.

Original entry on oeis.org

1, 1, 2, 8, 63, 893, 19714, 597510, 22903403, 1056115331, 56744710974, 3475626211316, 238818544070905, 18183183610029003, 1519020289266947462, 138117136134012654182, 13576724206357958780409, 1434561741418662640589225, 162136032834834405685977058, 19516966563322659948894106704
Offset: 0

Views

Author

Steven Finch, Sep 08 2004

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={Vec(serlaplace(exp(intformal(serreverse(x/exp((1 + 5*x - sqrt(1 - 6*x + x^2 + O(x^n)))/8))/x))))} \\ Andrew Howroyd, Feb 12 2021

Formula

Recurrence known, see Bodirsky and Kang.
Exponential transform of A097998. - Andrew Howroyd, Feb 12 2021

Extensions

a(0)=1 prepended and terms a(17) and beyond from Andrew Howroyd, Feb 12 2021

A027836 Total number of vertices in all loopless rooted planar maps with n edges.

Original entry on oeis.org

1, 2, 8, 43, 268, 1824, 13156, 98865, 765948, 6075256, 49094708, 402801425, 3346590068, 28099903160, 238079915640, 2032914717645, 17476713955548, 151143219598008, 1314045772469632, 11478299163026540, 100688538612524720, 886622619082002120, 7834289222109530340
Offset: 0

Views

Author

Keywords

Comments

The number of rooted isthmusless n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005

References

  • L. M. Koganov, V. A. Liskovets, T. R. S. Walsh, Total vertex enumeration in rooted planar maps, Ars Combin. 54 (2000), 149-160.
  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Maple
    12*n*(4*n-1)!*(5*n^2+13*n+2)/(n!*(3*n+3)!);
  • Mathematica
    Join[{1},Table[12n (4n-1)! (5n^2+13n+2)/(n!(3n+3)!),{n,20}]] (* Harvey P. Dale, May 20 2018 *)
  • PARI
    a(n) = if(n==0, 1, 12*n*(4*n-1)!*(5*n^2+13*n+2)/(n!*(3*n+3)!)) \\ Andrew Howroyd, Apr 06 2021

Formula

a(n) = 12*n*(4*n-1)!*(5*n^2+13*n+2)/(n!*(3*n+3)!) for n > 0.
G.f.: -(1-3*g+g^2)*g where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
a(n) = Sum_{k=1..n+1} k*A342981(n, k). - Andrew Howroyd, Apr 06 2021

Extensions

Offset corrected and terms a(21) and beyond from Andrew Howroyd, Apr 06 2021

A039735 Triangle read by rows: T(n,k) = number of nonisomorphic unlabeled planar graphs with n >= 1 nodes and 0 <= k <= 3n-6 edges.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1, 1, 2, 5, 9, 15, 21, 24, 24, 20, 13, 5, 2, 1, 1, 2, 5, 10, 21, 41, 65, 97, 130, 144, 135, 98, 51, 16, 5, 1, 1, 2, 5, 11, 24, 56, 115, 221, 401, 658, 956, 1217, 1264, 1042, 631, 275, 72, 14, 1, 1, 2, 5
Offset: 1

Views

Author

Keywords

Comments

Planar graphs with n >= 3 nodes have at most 3n-6 edges. - Charles R Greathouse IV, Feb 18 2013

Examples

			Triangle starts
n\k 0  1  2  3  4  5  6  7  8  9 10 11 12
--:-- -- -- -- -- -- -- -- -- -- -- -- --
1:  1
2:  1  1
3:  1  1  1  1
4:  1  1  2  3  2  1  1
5:  1  1  2  4  6  6  6  4  2  1
6:  1  1  2  5  9 15 21 24 24 20 13  5  2
		

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. J. Wilson, Introduction to Graph Theory. Academic Press, NY, 1972, p. 162.

Crossrefs

Cf. A005470 (row sums), A008406, A049334.

Formula

From Michael Somos, Aug 23 2015: (Start)
Sum_{k} T(n, k) = A005470(n) if n >= 1.
log(1 + A(x, y)) = Sum_{n>0} B(x^n, y^n) / n where A(x, y) = Sum_{n>0, k>=0} T(n,k) * x^n * y^k and similarly B(x, y) with A049334. (End)

A046646 a(n) = 2*binomial(3*n-3, n-1)/(2*n-1) for n >= 2, and a(1) = 1.

Original entry on oeis.org

1, 2, 6, 24, 110, 546, 2856, 15504, 86526, 493350, 2861430, 16829280, 100134216, 601661144, 3645533040, 22249511328, 136657509918, 844061090670, 5239262085330, 32665844580600, 204480219795390, 1284624902435490
Offset: 1

Views

Author

Keywords

Comments

Number of certain rooted planar maps.

Crossrefs

A diagonal of A046651.

Programs

  • Magma
    [1] cat [2*Binomial(3*n-3,n-1)/(2*n-1): n in [2..30]]; // Vincenzo Librandi, Oct 13 2013
  • Maple
    alias(PS=ListTools:-PartialSums): A046646List := proc(m) local A, P, n;
    A := [1,2]; P := [2]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]]));
    A := [op(A), P[-1]] od; A end: A046646List(22); # Peter Luschny, Mar 26 2022
  • Mathematica
    Join[{1},Table[(2*Binomial[3n-3,n-1])/(2n-1),{n,2,30}]] (* Harvey P. Dale, Oct 12 2013 *)

Formula

From Emeric Deutsch, Mar 03 2004: (Start)
a(n) = 2*binomial(3*n-3, n-1)/(2*n-1) for n >= 2, and a(1) = 1.
a(n) = 2*A001764(n-1) for n >= 2. (End)
a(n) = (n+1) * A000139(n). - F. Chapoton, Feb 23 2024
G.f.: (1+g)/(1-g) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011

Extensions

More terms from Emeric Deutsch, Mar 03 2004
New name using a formula of Emeric Deutsch by Peter Luschny, Feb 23 2024

A069729 Number of rooted non-separable bi-Eulerian planar maps with 2n edges. Bi-Eulerian means all its vertices and faces are of even valency.

Original entry on oeis.org

1, 1, 2, 8, 54, 442, 4032, 39706, 413358, 4487693, 50348500, 579994802, 6827955072, 81854670861, 996529292432, 12293898494952, 153421680489694, 1934041122204318, 24599034335501730, 315369011873625930, 4072021557616191708, 52915860528084306704, 691646518495876375968
Offset: 0

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

The formula from the article by Liskovets and Walsh, p. 218, B'ns(n), gives incorrect data {1, 4, 25, 204, 1964, 21070, 243681, ...}. Here is the incorrect formula rewritten into Mathematica: Table[(Sum[(-1)^j*3^(n - j - 1)*Binomial[2*n + j - 1, j] * Sum[(-1)^k*Binomial[j, k]*Binomial[3*n, n - j - k - 1], {k, 0, Min[j, n - j - 1]}], {j, 0, n - 1}] - 2*Sum[(-1)^j*3^(n - j - 1)*Binomial[2*n + j - 1, j] * Sum[(-1)^k*Binomial[j, k]*Binomial[3*n, n - j - k - 2], {k, 0, Min[j, n - j - 2]}], {j, 0, n - 2}])/n, {n, 1, 20}]. - Vaclav Kotesovec, Apr 13 2018

Examples

			A(x) = 1 + x + 2*x^2 + 8*x^3 + 54*x^4 + 442*x^5 + 4032*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1 + InverseSeries[Series[-(1+x)^4*(18*x^2-30*x-1 + (1-12*x)^(3/2))/(6*(3*x+2)^3), {x, 0, 25}], x], x] (* Vaclav Kotesovec, Apr 14 2018, after Gheorghe Coserea *)
  • PARI
    seq(N) = {
      my(x='x+O('x^(2*N-1)), y=1+serreverse(x/(3*(1+x)^3)), f=(1+3*y-y^2)/3,
         g=subst(f, 'x, 'x^2), v=Vec(subst(g, 'x, serreverse(x*g^2))));
      vector((#v+1)\2, n, v[2*n-1]);
    };
    seq(23) \\ Gheorghe Coserea, Apr 13 2018

Formula

G.f. y=A(x) satisfies 0 = y^9 - y^8 + 18*x*y^6 - 66*x*y^5 + 47*x*y^4 + 81*x^2*y^3 - 81*x^2*y^2 + 27*x^2*y - 3*x^2. - Gheorghe Coserea, Apr 13 2018
a(n) ~ 2^(6*n - 1) * 3^(8*n - 1/2) / (3125 * sqrt(Pi) * 13^(4*n - 5/2) * n^(5/2)). - Vaclav Kotesovec, Apr 13 2018
A(x) = 1 + serreverse(-(1+x)^4*(18*x^2-30*x-1 + (1-12*x)^(3/2))/(6*(3*x+2)^3)); equivalently, it can be rewritten as A(x) = 1 + serreverse((y - 1)*(3*y^2 + y - 1)^4 / (243 * y^6 * (2*y-1)^3)), where y = A000108(3*x). - Gheorghe Coserea, Apr 14 2018

Extensions

More terms from Gheorghe Coserea, Apr 13 2018

A112944 Number of unrooted regular odd-valent planar maps with 2 vertices; maps are considered up to orientation-preserving homeomorphisms and the vertices are of valency 2n+1.

Original entry on oeis.org

1, 2, 7, 39, 308, 3013, 33300, 394340, 4878109, 62232321, 812825244, 10818489817, 146250545528, 2003199281223, 27747288947266, 388087900316025, 5474206895126243, 77795972452841542, 1112947041203866164, 16016508647052018408, 231727628211887783830, 3368855109532696440867
Offset: 0

Views

Author

Valery A. Liskovets, Oct 10 2005

Keywords

Examples

			There exist 2 planar maps with two 3-valent vertices: a map with three parallel edges and a map with one loop in each vertex and a link. Therefore a(1)=2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (1/2) Binomial[2n, n] + (1/(4n+2)) Sum[EulerPhi[k] Binomial[2 Floor[n/k], Floor[n/k]]^2, {k, Divisors[2n+1]}];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 24 2018 *)
  • PARI
    a(n) = binomial(2*n, n)/2 + sumdiv(2*n+1, k, eulerphi(k)* binomial(2*(n\k), (n\k))^2)/(4*n+2); \\ Michel Marcus, Oct 14 2015

Formula

a(n) = (1/2)binomial(2n, n) + (1/(4n+2))sum_{k|(2n+1)}phi(k)* binomial(2*floor(n/k), floor(n/k))^2, where phi(k) is the Euler function A000010.

Extensions

More terms from Michel Marcus, Oct 14 2015

A126201 Number of rooted connected unlabeled planar graphs on n nodes.

Original entry on oeis.org

1, 1, 3, 11, 57, 375, 3398, 40043, 585440, 9895493
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Mar 09 2007

Keywords

Comments

Number of "pointed" connected planar graphs on n nodes: number of pairs (G,P) where G is a connected unlabeled planar graph with n nodes and P runs through the orbit representatives of nodes in G under the action of Aut(G).
For n <= 4 this agrees with A126100; a(5) = A126100(5) - 1 = 57, since K_5 is the only excluded graph on 5 nodes.

Crossrefs

Extensions

a(6)-a(10) from Brendan McKay, Mar 10 2007

A103941 Number of unrooted loopless n-edge maps in the plane (planar with a distinguished outside face).

Original entry on oeis.org

1, 1, 2, 6, 22, 103, 614, 3872, 26414, 186988, 1367976, 10254326, 78461338, 610598818, 4821248244, 38546510368, 311560875422, 2542507084588, 20925300483992, 173530381632724, 1448900079476152, 12172334379246523, 102833593763830038, 873187910184763024, 7449120536014301138
Offset: 0

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Mathematica
    a[n_] := (1/(2n)) (Binomial[4n, n]/(3n+1) + Sum[Boole[0 < k < n] EulerPhi[ n/k] Binomial[4k, k], {k, Divisors[n]}] + q[n]);
    q[n_] := If[EvenQ[n], 0, Binomial[2n, (n-1)/2]];
    Array[a, 20] (* Jean-François Alcover, Sep 01 2019 *)
  • PARI
    a(n) = {if(n==0, 1, (sumdiv(n, d, if(dAndrew Howroyd, Mar 28 2021

Formula

For n > 0, a(n) = (1/(2n))*[binomial(4n, n)/(3n+1) + Sum_{0A000010, q(n)=0 if n is even and q(n)=binomial(2n, (n-1)/2) if n is odd.

Extensions

a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Mar 28 2021

A361366 Number of unlabeled simple planar digraphs with n nodes.

Original entry on oeis.org

1, 3, 16, 218, 9026, 907123
Offset: 1

Views

Author

Manfred Scheucher, Mar 09 2023

Keywords

References

  • M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.

Crossrefs

Directed variant of A005470.

A006849 Number of strongly self-dual planar maps with 2n edges.

Original entry on oeis.org

2, 9, 69, 567, 5112, 48114, 469179, 4691115, 47849940, 495893502, 5206886874, 55273052646, 592211326464, 6395881806180, 69555215111319, 761015877850035, 8371174661041500, 92523509359662150, 1027010953940099238
Offset: 1

Views

Author

Keywords

Comments

A planar map is called strongly self-dual if it is self-dual with respect to an orientation-preserving duality. - Valery A. Liskovets, May 27 2006

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    With[{nn = 21}, CoefficientList[InverseSeries[Series[2*x/(12*x^2 + 12*x + 3), {x, 0, nn}]] + InverseSeries[Series[2*x/(12*x^2 + 1), {x, 0, nn}]], x]] (* Gheorghe Coserea, Aug 15 2015 *)
    a[n_] := 3^n*CatalanNumber[n]/2 + If[OddQ[n], 3^((n-1)/2)*CatalanNumber[(n-1)/2]/2, 0]; Array[a, 20] (* Jean-François Alcover, Jan 17 2018 *)
  • PARI
    C = n -> binomial(2*n, n) / (n + 1);
    a(n) = if (n%2, ( 3^n*C(n) + 3^((n-1)/2)*C((n-1)/2) )/2, 3^n*C(n)/2);
    apply(n -> a(n), vector(30, i, i)) \\ Gheorghe Coserea, Aug 04 2015
    
  • PARI
    x='x + O('x^33); Vec(-1/2 + 1/(1 + (1 - 12*x)^(1/2)) + x/(1 + (1 - 12*x^2)^(1/2))) \\ Gheorghe Coserea, Aug 15 2015

Formula

a(2k) = 3^(2k)C(2k)/2=A005159(2k)/2 (4k edges, k>0) and a(2k-1) = (3^(2k-1)C(2k-1)+3^(k-1)C(k-1))/2 =(A005159(2k-1)+A005159(k-1))/2 (4k-2 edges, k>0) where C(n) = A000108(n) (Catalan numbers). - Valery A. Liskovets, May 27 2006
G.f.: -1/2 + 1/(1 + (1 - 12*x)^(1/2)) + x/(1 + (1 - 12*x^2)^(1/2)). - Gheorghe Coserea, Aug 15 2015

Extensions

More terms from Valery A. Liskovets, May 27 2006
Previous Showing 11-20 of 36 results. Next