cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 86 results. Next

A343672 a(0) = 1; a(n) = 2 * n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * a(k).

Original entry on oeis.org

1, 3, 19, 181, 2299, 36501, 695427, 15457709, 392672651, 11221959685, 356339728243, 12446649786429, 474273933636411, 19577992095770837, 870345573347448803, 41455153171478627533, 2106173029315813515883, 113694251997087087941925, 6498401704686168598548435, 392062852538564346207533789
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = 2 n a[n - 1] + Sum[Binomial[n, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 19}]
    nmax = 19; CoefficientList[Series[1/(2 (1 - x) - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: 1 / (2 * (1 - x) - exp(x)).
a(n) ~ n! / (2*(1 + LambertW(exp(1)/2)) * (1 - LambertW(exp(1)/2))^(n+1)). - Vaclav Kotesovec, Jun 20 2022

A347204 a(n) = a(f(n)/2) + a(floor((n+f(n))/2)) for n > 0 with a(0) = 1 where f(n) = A129760(n).

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 10, 15, 5, 9, 13, 20, 17, 27, 37, 52, 6, 11, 16, 25, 21, 34, 47, 67, 26, 43, 60, 87, 77, 114, 151, 203, 7, 13, 19, 30, 25, 41, 57, 82, 31, 52, 73, 107, 94, 141, 188, 255, 37, 63, 89, 132, 115, 175, 235, 322, 141, 218, 295, 409, 372, 523, 674
Offset: 0

Views

Author

Mikhail Kurkov, Aug 23 2021 [verification needed]

Keywords

Comments

Modulo 2 binomial transform of A243499(n).

Crossrefs

Programs

  • MATLAB
    function a = A347204(max_n)
        a(1) = 1;
        a(2) = 2;
        for nloop = 3:max_n
            n = nloop-1;
            s = 0;
            for k = 0:floor(log2(n))-1
                s = s + a(1+A053645(n)-2^k*(mod(floor(n/(2^k)),2)));
            end
            a(nloop) = 2*a(A053645(n)+1) + s;
        end
    end
    function a_n = A053645(n)
        a_n = n - 2^floor(log2(n));
    end % Thomas Scheuerle, Oct 25 2021
  • Mathematica
    f[n_] := BitAnd[n, n - 1]; a[0] = 1; a[n_] := a[n] = a[f[n]/2] + a[Floor[(n + f[n])/2]]; Array[a, 100, 0] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    f(n) = bitand(n, n-1); \\ A129760
    a(n) = if (n<=1, n+1, if (n%2, a(n\2)+a(n-1), a(f(n/2)) + a(n/2+f(n/2)))); \\ Michel Marcus, Oct 25 2021
    
  • PARI
    \\ Also see links.
    
  • PARI
    A129760(n) = bitand(n, n-1);
    memoA347204 = Map();
    A347204(n) = if (n<=1, n+1, my(v); if(mapisdefined(memoA347204,n,&v), v, v = if(n%2, A347204(n\2)+A347204(n-1), A347204(A129760(n/2)) + A347204(n/2+A129760(n/2))); mapput(memoA347204,n,v); (v))); \\ (Memoized version of Michel Marcus's program given above) - Antti Karttunen, Nov 20 2021
    

Formula

a(n) = a(n - 2^f(n)) + (1 + f(n))*a((n - 2^f(n))/2) for n > 0 with a(0) = 1 where f(n) = A007814(n).
a(2n+1) = a(n) + a(2n) for n >= 0.
a(2n) = a(n - 2^f(n)) + a(2n - 2^f(n)) for n > 0 with a(0) = 1 where f(n) = A007814(n).
a(n) = 2*a(f(n)) + Sum_{k=0..floor(log_2(n))-1} a(f(n) - 2^k*T(n,k)) for n > 1 with a(0) = 1, a(1) = 2, and where f(n) = A053645(n), T(n,k) = floor(n/2^k) mod 2.
Sum_{k=0..2^n - 1} a(k) = A035009(n+1) for n >= 0.
a((4^n - 1)/3) = A002720(n) for n >= 0.
a(2^n - 1) = A000110(n+1),
a(2*(2^n - 1)) = A005493(n),
a(2^2*(2^n - 1)) = A005494(n),
a(2^3*(2^n - 1)) = A045379(n),
a(2^4*(2^n - 1)) = A196834(n),
a(2^m*(2^n-1)) = T(n,m+1) is the n-th (m+1)-Bell number for n >= 0, m >= 0 where T(n,m) = m*T(n-1,m) + Sum_{k=0..n-1} binomial(n-1,k)*T(k,m) with T(0,m) = 1.
a(n) = Sum_{j=0..2^A000120(n)-1} A243499(A295989(n,j)) for n >= 0. Also A243499(n) = Sum_{j=0..2^f(n)-1} (-1)^(f(n)-f(j)) a(A295989(n,j)) for n >= 0 where f(n) = A000120(n). In other words, a(n) = Sum_{j=0..n} (binomial(n,j) mod 2)*A243499(j) and A243499(n) = Sum_{j=0..n} (-1)^(f(n)-f(j))*(binomial(n,j) mod 2)*a(j) for n >= 0 where f(n) = A000120(n).
Generalization:
b(n, x) = (1/x)*b((n - 2^f(n))/2, x) + (-1)^n*b(floor((2n - 2^f(n))/2), x) for n > 0 with b(0, x) = 1 where f(n) = A007814(n).
Sum_{k=0..2^n - 1} b(k, x) = (1/x)^n for n >= 0.
b((4^n - 1)/3, x) = (1/x)^n*n!*L_{n}(x) for n >= 0 where L_{n}(x) is the n-th Laguerre polynomial.
b((8^n - 1)/7, x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A265649(n, k) for n >= 0.
b(2^n - 1, x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A008277(n+1, k+1),
b(2*(2^n - 1), x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A143494(n+2, k+2),
b(2^2*(2^n - 1), x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A143495(n+3, k+3),
b(2^m*(2^n - 1), x) = (1/x)^n*Sum_{k=0..n} (-x)^k*T(n+m+1, k+m+1, m+1) for n >= 0, m >= 0 where T(n,k,m) is m-Stirling numbers of the second kind.

A011967 4th differences of Bell numbers.

Original entry on oeis.org

4, 15, 67, 322, 1657, 9089, 52922, 325869, 2114719, 14418716, 103004851, 769052061, 5987339748, 48506099635, 408157244967, 3561086589202, 32164670915029, 300324194090773, 2894932531218482, 28773297907499129
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Differences[BellB[Range[0, 50]], 4] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A011967_list, blist, b = [4], [5, 7, 10, 15], 15
    for _ in range(250):
        blist = list(accumulate([b]+blist))
        b = blist[-1]
        A011967_list.append(blist[-5]) # Chai Wah Wu, Sep 20 2014

A102287 Total number of even blocks in all partitions of n-set.

Original entry on oeis.org

0, 1, 3, 13, 55, 256, 1274, 6791, 38553, 232171, 1477355, 9898780, 69621864, 512585529, 3940556611, 31560327945, 262805569159, 2271094695388, 20333574916690, 188322882941471, 1801737999086129, 17783472151154007, 180866601699482803, 1893373126840572056
Offset: 1

Views

Author

Vladeta Jovovic, Feb 19 2005

Keywords

Examples

			a(3)=3 because in the 5 (=A000110(3)) partitions 123, (12)/3, (13)/2, 1/(23) and 1/2/3 of {1,2,3} we have 3 blocks of even size (shown between parentheses).
		

Crossrefs

Programs

  • Maple
    G:=(cosh(x)-1)*exp(exp(x)-1): Gser:=series(G,x=0,28): seq(n!*coeff(Gser,x^n),n=1..25); # Emeric Deutsch, Jun 22 2005
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, 0],
           add((p->(p+[0, `if`(i::odd, 0, j)*p[1]]))(
           b(n-i*j, i-1))*multinomial(n, n-i*j, i$j)/j!, j=0..n/i))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..30);  # Alois P. Heinz, Sep 16 2015
  • Mathematica
    Range[0, nn]! CoefficientList[
      D[Series[Exp[y (Cosh[x] - 1) + Sinh[x]], {x, 0, nn}], y] /. y -> 1,  x]  (* Geoffrey Critzer, Aug 28 2012 *)

Formula

E.g.f: (cosh(x)-1)*exp(exp(x)-1).

Extensions

More terms from Emeric Deutsch, Jun 22 2005

A108458 Triangle read by rows: T(n,k) is the number of set partitions of {1,2,...,n} in which the last block is the singleton {k}, 1<=k<=n; the blocks are ordered with increasing least elements.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 3, 5, 0, 1, 5, 10, 15, 0, 1, 9, 22, 37, 52, 0, 1, 17, 52, 99, 151, 203, 0, 1, 33, 130, 283, 471, 674, 877, 0, 1, 65, 340, 855, 1561, 2386, 3263, 4140, 0, 1, 129, 922, 2707, 5451, 8930, 12867, 17007, 21147, 0, 1, 257, 2572, 8919, 19921, 35098, 53411, 73681, 94828, 115975
Offset: 1

Views

Author

Christian G. Bower, Jun 03 2005; Emeric Deutsch, Nov 14 2006

Keywords

Comments

Another way to obtain this sequence (with offset 0): Form the infinite array U(n,k) = number of labeled partitions of (n,k) into pairs (i,j), for n >= 0, k >= 0 and read it by antidiagonals. In other words, U(n,k) = number of partitions of n black objects labeled 1..n and k white objects labeled 1..k. Each block must have at least one white object.
Then T(n,k)=U(n+k,k+1). Thus the two versions are related like "multichoose" to "choose". - Augustine O. Munagi, Jul 16 2007

Examples

			Triangle T(n,k) starts:
  1;
  0,1;
  0,1,2;
  0,1,3,5;
  0,1,5,10,15;
T(5,3)=5 because we have 1245|3, 145|2|3, 14|25|3, 15|24|3 and 1|245|3.
The arrays U(n,k) starts:
   1  0  0   0   0 ...
   1  1  1   1   1 ...
   2  3  5   9  17 ...
   5 10 22  52 130 ...
  15 37 99 283 855 ...
		

Crossrefs

Row sums of T(n, k) yield A124496(n, 1).
Cf. A108461.
Columns of U(n, k): A000110, A005493, A033452.
Rows of U(n, k): A000007, A000012, A000051.
Main diagonal: A108459.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[n == k, 1, i^(n-k)]*StirlingS2[k, i], {i, 0, k}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 10 2024, after Vladeta Jovovic *)

Formula

T(n,1)=0 for n>=2; T(n,2)=1 for n>=2; T(n,3)=1+2^(n-3) for n>=3; T(n,n)=B(n-1), T(n,n-1)=B(n-1)-B(n-2), where B(q) are the Bell numbers (A000110).
Double e.g.f.: exp(exp(x)*(exp(y)-1)).
U(n,k) = Sum_{i=0..k} i^(n-k)*Stirling2(k,i). - Vladeta Jovovic, Jul 12 2007

Extensions

Edited by N. J. A. Sloane, May 22 2008, at the suggestion of Vladeta Jovovic. This entry is a composite of two entries submitted independently by Christian G. Bower and Emeric Deutsch, with additional comments from Augustine O. Munagi.

A362495 Total number of blocks containing at least one odd element and at least one even element in all partitions of [n].

Original entry on oeis.org

0, 0, 1, 3, 13, 54, 262, 1294, 7109, 40367, 248651, 1587414, 10827740, 76494630, 571499993, 4414720825, 35798107309, 299547765240, 2616358573834, 23536296521084, 220030456297349, 2114721297588097, 21046291460160803, 214984439282684504, 2267305399918683232
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2023

Keywords

Examples

			a(3) = 3 = 1 + 1 + 0 + 1 + 0 : 123, 12|3, 13|2, 1|23, 1|2|3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, x, y, m) option remember; `if`(n=0, m,
          `if`(x+m>0, b(n-1, y, x, m)*(x+m), 0)+b(n-1, y, x+1, m)+
          `if`(y>0, b(n-1, y-1, x, m+1)*y, 0))
        end:
    a:= n-> b(n, 0$3):
    seq(a(n), n=0..25);

Formula

a(n) = Sum_{k=0..floor(n/2)} k * A124418(n,k).
a(n) = A138378(n) - A363434(n) = A005493(n-1) - A363434(n) for n>=1.

A367889 Expansion of e.g.f. exp(3*(exp(x) - 1) + 2*x).

Original entry on oeis.org

1, 5, 28, 173, 1165, 8468, 65923, 546197, 4791214, 44301143, 430158397, 4372004546, 46381674085, 512328076385, 5879362011436, 69958289731457, 861605015493073, 10965899141265500, 144018319806024991, 1949190279770578145, 27153595018237222774
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[3 (Exp[x] - 1) + 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 2 a[n - 1] + 3 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
    Table[Sum[Binomial[n, k] 2^(n - k) BellB[k, 3], {k, 0, n}], {n, 0, 20}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1) + 2*x))) \\ Michel Marcus, Dec 04 2023

Formula

G.f. A(x) satisfies: A(x) = 1 + x * ( 2 * A(x) + 3 * A(x/(1 - x)) / (1 - x) ).
a(n) = exp(-3) * Sum_{k>=0} 3^k * (k+2)^n / k!.
a(0) = 1; a(n) = 2 * a(n-1) + 3 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(n-k) * A027710(k).

A003466 Number of minimal covers of an n-set that have exactly one point which appears in more than one set in the cover.

Original entry on oeis.org

0, 3, 28, 210, 1506, 10871, 80592, 618939, 4942070, 41076508, 355372524, 3198027157, 29905143464, 290243182755, 2920041395248, 30414515081650, 327567816748638, 3643600859114439, 41809197852127240, 494367554679088923, 6017481714095327410
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046165.
Column k=1 of A282575.

Programs

  • Maple
    seq(n*add((2^k-k-1)*Stirling2(n-1,k),k=1..n-1), n = 2 .. 30); # Robert Israel, May 21 2015
  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Sum[ (Exp[x] - 1)^n/n! (2^n - n - 1) x, {n, 0, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Feb 18 2017 *)
    a[2]=0;a[3]=3;a[4]=28;a[n_]:=n*Sum[(2^k-k-1)* StirlingS2[n-1,k], {k,1,n-1}];Table[a[n],{n,2,22}] (* Indranil Ghosh, Feb 20 2017 *)

Formula

a(n) = n * Sum_{k=1..n-1} (2^k-k-1) * S2(n-1,k) where S2(n,k) are the Stirling numbers of the second kind. - Sean A. Irvine, May 20 2015
a(n) = n * (A001861(n-1) - A005493(n-2) - A000110(n-1)). - Robert Israel, May 21 2015

Extensions

More terms from Sean A. Irvine, May 20 2015
Title clarified by Geoffrey Critzer, Feb 18 2017

A056861 Triangle T(n,k) is the number of restricted growth strings (RGS) of set partitions of {1..n} that have an increase at index k (1<=k

Original entry on oeis.org

1, 3, 2, 10, 7, 6, 37, 27, 23, 21, 151, 114, 97, 88, 83, 674, 523, 446, 403, 378, 363, 3263, 2589, 2217, 1999, 1867, 1785, 1733, 17007, 13744, 11829, 10658, 9923, 9452, 9145, 8942, 94828, 77821, 67340, 60689, 56380, 53541, 51644, 50361, 49484, 562595
Offset: 2

Views

Author

Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000

Keywords

Comments

Number of rises s_{k+1} > s_k in an RGS [s_1, ..., s_n] of a set partition of {1, ..., n}, where s_i is the subset containing i, and s_i <= 1 + max(j
Note that the number of equalities at any index is B(n-1), where B(n) are the Bell numbers. - Franklin T. Adams-Watters, Jun 08 2006

Examples

			For example, [1, 2, 1, 2, 2, 3] is the RGS of a set partition of {1, 2, 3, 4, 5, 6} and has 3 rises, at i = 1, i = 3 and i = 5.
1;
3,2;
10,7,6;
37,27,23,21;
151,114,97,88,83;
674,523,446,403,378,363;
3263,2589,2217,1999,1867,1785,1733;
17007,13744,11829,10658,9923,9452,9145,8942;
94828,77821,67340,60689,56380,53541,51644,50361,49484;
562595,467767,406953,367101,340551,322619,310365,301905,296011,291871;
3535027,2972432,2599493,2348182,2176575,2058068,1975425,1917290,1876075, 1846648,1825501;
		

References

  • W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [apparently unpublished, Joerg Arndt, Mar 05 2016]

Crossrefs

Cf. Bell numbers A005493, A011965.

Programs

  • Mathematica
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, If[jJean-François Alcover, May 23 2016, after Alois P. Heinz *)

Extensions

Edited and extended by Franklin T. Adams-Watters, Jun 08 2006
Clarified definition and edited comment and example, Joerg Arndt, Mar 08 2016
Several terms corrected, R. J. Mathar, Mar 08 2016

A056862 Triangle T(n,k) is the number of restricted growth strings (RGS) of set partitions of {1..n} that have a decrease at index k (1<=k

Original entry on oeis.org

0, 0, 1, 0, 3, 4, 0, 10, 14, 16, 0, 37, 54, 63, 68, 0, 151, 228, 271, 296, 311, 0, 674, 1046, 1264, 1396, 1478, 1530, 0, 3263, 5178, 6349, 7084, 7555, 7862, 8065, 0, 17007, 27488, 34139, 38448, 41287, 43184, 44467, 45344, 0, 94828, 155642, 195494, 222044, 239976, 252230, 260690, 266584, 270724
Offset: 2

Author

Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000

Keywords

Comments

Number of falls s_k > s_{k+1} in a RGS [s_1, ..., s_n] of a set partition of {1, ..., n}, where s_i is the subset containing i, s_1 = 1 and s_i <= 1 + max(j
Note that the number of equalities at any index is B(n-1), where B(n) are the Bell numbers. - Franklin T. Adams-Watters, Jun 08 2006

Examples

			For example, [1, 2, 1, 2, 2, 3] is the RGS of a set partition of {1, 2, 3, 4, 5, 6} and has 1 fall, at i = 2.
0;
0,1;
0,3,4;
0,10,14,16;
0,37,54,63,68;
0,151,228,271,296,311;
0,674,1046,1264,1396,1478,1530;
0,3263,5178,6349,7084,7555,7862,8065;
0,17007,27488,34139,38448,41287,43184,44467,45344;
0,94828,155642,195494,222044,239976,252230,260690,266584,270724;
0,562595,935534,1186845,1358452,1476959,1559602,1617737,1658952,1688379, 1709526;
		

References

  • W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [apparently unpublished, Joerg Arndt, Mar 05 2016]

Crossrefs

Cf. Bell numbers A005493.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, [1, 0],
          add((p-> p+[0, `if`(j (p-> seq(coeff(p, x, i), i=1..n-1))(b(n, 1, 0$2)[2]):
    seq(T(n), n=2..12);  # Alois P. Heinz, Mar 24 2016
  • Mathematica
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, If[jJean-François Alcover, May 23 2016, after Alois P. Heinz *)

Formula

T(n,k) = B(n) - B(n-1) - A056861(n,k). - Franklin T. Adams-Watters, Jun 08 2006
Conjecture: T(n,3) = 2*A011965(n). - R. J. Mathar, Mar 08 2016

Extensions

Edited and extended by Franklin T. Adams-Watters, Jun 08 2006
Clarified definition and edited comment and example, Joerg Arndt, Mar 08 2016
Data corrected, R. J. Mathar, Mar 08 2016
Previous Showing 51-60 of 86 results. Next