A263799 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nonincreasing.
2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 4, 3, 7, 3, 4, 4, 4, 7, 7, 4, 4, 5, 4, 14, 7, 14, 4, 5, 5, 5, 14, 17, 17, 14, 5, 5, 6, 5, 25, 18, 61, 18, 25, 5, 6, 6, 6, 25, 56, 130, 130, 56, 25, 6, 6, 7, 6, 41, 66, 494, 616, 494, 66, 41, 6, 7, 7, 7, 41, 218, 1435, 4991, 4991, 1435, 218, 41, 7, 7, 8, 7, 63, 272
Offset: 1
Examples
Some solutions for n=5 k=4 ..1..1..0..0..0....1..1..1..1..0....1..1..0..0..0....1..1..0..0..0 ..1..1..0..0..0....1..1..1..1..0....1..1..0..0..0....1..1..0..0..0 ..1..1..0..0..0....1..1..1..1..0....1..1..0..0..0....1..1..0..0..0 ..1..1..0..0..0....1..1..1..1..0....1..1..0..0..0....1..1..0..0..0 ..0..0..1..1..0....1..1..1..1..0....0..0..0..0..0....1..1..0..0..0 ..0..0..1..1..0....1..1..1..1..0....0..0..0..0..0....1..1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..144
Crossrefs
Column 1 is A005578(n+1).
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) -a(n-3)
k=2: a(n) = a(n-1) +a(n-2) -a(n-3)
k=3: a(n) = a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7)
k=4: [order 19]
k=5: [order 37]
k=6: [order 83]
Comments