A005670
Mrs. Perkins's quilt: smallest coprime dissection of n X n square.
Original entry on oeis.org
1, 4, 6, 7, 8, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17
Offset: 1
Illustrating a(7) = 9: a dissection of a 7 X 7 square into 9 pieces, courtesy of _Ed Pegg Jr_:
.___.___.___.___.___.___.___
|...........|.......|.......|
|...........|.......|.......|
|...........|.......|.......|
|...........|___.___|___.___|
|...........|...|...|.......|
|___.___.___|___|___|.......|
|...............|...|.......|
|...............|___|___.___|
|...............|...........|
|...............|...........|
|...............|...........|
|...............|...........|
|...............|...........|
|___.___.___.___|___.___.___|
The Duijvestijn code for this is {{3,2,2},{1,1,2},{4,1},{3}}
Solutions for n = 1..10: 1 {{1}}
2 {{1, 1}, {1, 1}}
3 {{2, 1}, {1}, {1, 1, 1}}
4 {{2, 2}, {2, 1, 1}, {1, 1}}
5 {{3, 2}, {1, 1}, {2, 1, 2}, {1}}
6 {{3, 3}, {3, 2, 1}, {1}, {1, 1, 1}}
7 {{4, 3}, {1, 2}, {3, 1, 1}, {2, 2}}
8 {{4, 4}, {4, 2, 2}, {2, 1, 1}, {1, 1}}
9 {{5, 4}, {1, 1, 2}, {4, 2, 1}, {3}, {2}}
10 {{5, 5}, {5, 3, 2}, {1, 1}, {2, 1, 2}, {1}}
- H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, C3.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ed Wynn, Table of n, a(n) for n = 1..120
- J. H. Conway, Mrs. Perkins's quilt, Proc. Camb. Phil. Soc., 60 (1964), 363-368.
- A. J. W. Duijvestijn, Table I
- A. J. W. Duijvestijn, Table II
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- Ed Pegg, Jr., Mrs Perkins's Quilts (best known values to 40000)
- G. B. Trustrum, Mrs Perkins's quilt, Proc. Cambridge Philos. Soc., 61 1965 7-11.
- Eric Weisstein's World of Mathematics, Mrs. Perkins's Quilt
- Ed Wynn, Exhaustive generation of 'Mrs Perkins's quilt' square dissections for low orders, arXiv:1308.5420 [math.CO], 2013-2014.
- Ed Wynn, Exhaustive generation of 'Mrs. Perkins's quilt' square dissections for low orders, Discrete Math. 334 (2014), 38--47. MR3240464
A041008
Numerators of continued fraction convergents to sqrt(7).
Original entry on oeis.org
2, 3, 5, 8, 37, 45, 82, 127, 590, 717, 1307, 2024, 9403, 11427, 20830, 32257, 149858, 182115, 331973, 514088, 2388325, 2902413, 5290738, 8193151, 38063342, 46256493, 84319835, 130576328, 606625147, 737201475, 1343826622, 2081028097, 9667939010, 11748967107, 21416906117
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- C. Elsner, Series of Error Terms for Rational Approximations of Irrational Numbers, J. Int. Seq. 14 (2011) # 11.1.4.
- C. Elsner, M. Stein, On Error Sum Functions Formed by Convergents of Real Numbers, J. Int. Seq. 14 (2011) # 11.8.6.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,16,0,0,0,-1).
Analog for other sqrt(m):
A001333 (m=2),
A002531 (m=3),
A001077 (m=5),
A041006 (m=6),
A041010 (m=8),
A005667 (m=10),
A041014 (m=11),
A041016 (m=12), ...,
A042934 (m=999),
A042936 (m=1000).
-
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[7],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
Numerator[Convergents[Sqrt[7], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
LinearRecurrence[{0,0,0,16,0,0,0,-1},{2,3,5,8,37,45,82,127},40] (* Harvey P. Dale, Jul 23 2021 *)
-
A041008=contfracpnqn(c=contfrac(sqrt(7)),#c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041008[n+1]! For more terms use:
A041008(n)={n<#A041008|| A041008=extend(A041008, [4, 16; 8, -1], n\.8); A041008[n+1]}
extend(A,c,N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[,1]]*c[,2]); A} \\ (End)
A041014
Numerators of continued fraction convergents to sqrt(11).
Original entry on oeis.org
3, 10, 63, 199, 1257, 3970, 25077, 79201, 500283, 1580050, 9980583, 31521799, 199111377, 628855930, 3972246957, 12545596801, 79245827763, 250283080090, 1580944308303, 4993116004999, 31539640338297
Offset: 0
-
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[11],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
Numerator[Convergents[Sqrt[11], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
-
A041014=contfracpnqn(c=contfrac(sqrt(11)), #c)[1,][^-1] \\ Discard last element which may be incorrect. Use e.g. \p999 to get more terms, or extend as follows:
{A041014_upto(N,A=Vec(A041014,N))=for(n=#A041014+1,N, A[n]=20*A[n-2]-A[n-4]); A041014=A} \\ M. F. Hasler, Nov 01 2019
A042936
Numerators of continued fraction convergents to sqrt(1000).
Original entry on oeis.org
31, 32, 63, 95, 158, 253, 1676, 3605, 8886, 136895, 282676, 702247, 4496158, 5198405, 9694563, 14892968, 24587531, 39480499, 2472378469, 2511858968, 4984237437, 7496096405, 12480333842, 19976430247, 132338915324, 284654260895, 701647437114, 10809365817605, 22320379072324
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 78960998, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
-
Numerator[Convergents[Sqrt[1000], 30]] (* Harvey P. Dale, Oct 29 2013 *)
-
A42936=contfracpnqn(c=contfrac(sqrt(1000)), #c)[1,][^-1] \\ Discards possibly incorrect last term. NB: a(n)=A42936[n+1]. Could be extended using: {A42936=concat(A42936, 78960998*A42936[-18..-1]-A42936[-36..-19])}
\\ But terms with arbitrarily large indices can be computed using:
A042936(n)={[A42936[n%18+i]|i<-[1, 19]]*([0, -1; 1, 78960998]^(n\18))[,1]} \\ Faster but longer with n=divrem(n,18). (End)
A041010
Numerators of continued fraction convergents to sqrt(8).
Original entry on oeis.org
2, 3, 14, 17, 82, 99, 478, 577, 2786, 3363, 16238, 19601, 94642, 114243, 551614, 665857, 3215042, 3880899, 18738638, 22619537, 109216786, 131836323, 636562078, 768398401, 3710155682, 4478554083, 21624372014, 26102926097, 126036076402, 152139002499
Offset: 0
Analog for other sqrt(m):
A001333 (m=2),
A002531 (m=3),
A001077 (m=5),
A041006 (m=6),
A041008 (m=7),
A005667 (m=10),
A041014 (m=11),
A041016 (m=12), ...,
A042934 (m=999),
A042936 (m=1000).
-
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[8],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011*)
CoefficientList[Series[(2 + 3*x + 2*x^2 - x^3)/(1 - 6*x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 28 2013 *)
a0[n_] := -((3-2*Sqrt[2])^n*(1+Sqrt[2]))+(-1+Sqrt[2])*(3+2*Sqrt[2])^n // Simplify
a1[n_] := ((3-2*Sqrt[2])^n+(3+2*Sqrt[2])^n)/2 // Simplify
Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)
-
A041010=contfracpnqn(c=contfrac(sqrt(8)),#c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041010[n+1]! For more terms use:
A041010(n)={n<#A041010|| A041010=extend(A041010, [-1,0,6,0]~, n\.8); A041010[n+1]}
extend(A,c,N)={for(n=#A+1,#A=Vec(A,N), A[n]=A[n-#c..n-1]*c);A} \\ (End)
Initial term 1 removed and b-file, program and formulas adapted by
Georg Fischer, Jul 01 2019
A042934
Numerators of continued fraction convergents to sqrt(999).
Original entry on oeis.org
31, 32, 63, 95, 158, 885, 5468, 6353, 37233, 80819, 441328, 522147, 3574210, 18393197, 21967407, 40360604, 62328011, 102688615, 6429022141, 6531710756, 12960732897, 19492443653, 32453176550
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 205377230, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
-
Numerator[Convergents[Sqrt[999], 30]] (* Vincenzo Librandi, Dec 10 2013 *)
-
A42934=contfracpnqn(c=contfrac(sqrt(999)), #c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n) = A42934[n+1]! For more terms, use:
A042934(n)={n<#A42934 || A42934_upto(n+10); A42934[n+1]}
{A42934_upto(N,A=Vec(A42934,N))=for(n=#A42934+1,N, A[n]=205377230*A[n-18]-A[n-36]); A42934=A} \\ M. F. Hasler, Nov 01 2019
A084132
a(n) = 4*a(n-1) + 6*a(n-2), a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 14, 68, 356, 1832, 9464, 48848, 252176, 1301792, 6720224, 34691648, 179087936, 924501632, 4772534144, 24637146368, 127183790336, 656558039552, 3389334900224, 17496687838208, 90322760754176, 466271170045952
Offset: 0
-
[n le 2 select 2^(n-1) else 4*Self(n-1) +6*Self(n-2): n in [1..40]]; // G. C. Greubel, Oct 13 2022
-
LinearRecurrence[{4,6}, {1,2}, 40] (* G. C. Greubel, Oct 13 2022 *)
-
[lucas_number2(n,4,-6)/2 for n in range(0, 22)] # Zerinvary Lajos, May 14 2009
-
A084132=BinaryRecurrenceSequence(4,6,1,2)
[A084132(n) for n in range(41)] # G. C. Greubel, Oct 13 2022
A084134
a(n) = 8*a(n-1) - 6*a(n-2), a(0) = 1, a(1) = 4.
Original entry on oeis.org
1, 4, 26, 184, 1316, 9424, 67496, 483424, 3462416, 24798784, 177615776, 1272133504, 9111373376, 65258185984, 467397247616, 3347628865024, 23976647434496, 171727406285824, 1229959365679616, 8809310487721984
Offset: 0
-
[n le 2 select 4^(n-1) else 8*Self(n-1) -6*Self(n-2): n in [1..40]]; // G. C. Greubel, Oct 13 2022
-
LinearRecurrence[{8,-6},{1,4},30] (* Harvey P. Dale, Nov 30 2011 *)
-
A084134=BinaryRecurrenceSequence(8,-6,1,4)
[A084134(n) for n in range(41)] # G. C. Greubel, Oct 13 2022
A129557
Numbers k > 0 such that k^2 is a centered pentagonal number (A005891).
Original entry on oeis.org
1, 4, 34, 151, 1291, 5734, 49024, 217741, 1861621, 8268424, 70692574, 313982371, 2684456191, 11923061674, 101938642684, 452762361241, 3870983965801, 17193046665484, 146995452057754, 652883010927151, 5581956194228851, 24792361368566254
Offset: 1
Cf.
A005891 (centered pentagonal numbers).
-
Do[ f=(5n^2+5n+2)/2; If[ IntegerQ[ Sqrt[f] ], Print[ Sqrt[f] ] ], {n,1,40000} ]
CoefficientList[Series[(1-x)*(1+5*x+x^2)/((1+6*x-x^2)*(1-6*x-x^2)),{x,0,30}],x] (* Vincenzo Librandi, Apr 11 2012 *)
-
A129557()={ for(n=1,1000000000, f=(5*n^2+5*n+2)/2 ; if(issquare(f), print1(sqrtint(f), ", ") ; ); ) ; } \\ R. J. Mathar, Oct 11 2007
-
Vec(x*(1-x)*(1+5*x+x^2)/((1+6*x-x^2)*(1-6*x-x^2)) + O(x^100)) \\ Colin Barker, Jan 28 2015
A005674
a(n) = 2^(n-1) + 2^[ n/2 ] + 2^[ (n-1)/2 ] - F(n+3).
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 10, 25, 63, 144, 327, 711, 1534, 3237, 6787, 14056, 28971, 59283, 120894, 245457, 497167, 1004256, 2025199, 4077007, 8198334, 16467597, 33052491, 66293208
Offset: 0
a(6) = a(2*3) = 2^5 - f(9) + 3*2^2 = 32 - 34 + 12 = 10. The 10 compositions are (1,4,1), (3,2,1), (1,2,3), (2,1,2,1), (1,2,1,2), (2,1,1,2), (1,2,2,1), (1,2,1,1,1), (1,1,2,1,1), (1,1,1,2,1).
- R. K. Guy, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Comments