cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 103 results. Next

A005775 Number of compact-rooted directed animals of size n having 3 source points.

Original entry on oeis.org

1, 4, 14, 45, 140, 427, 1288, 3858, 11505, 34210, 101530, 300950, 891345, 2638650, 7809000, 23107488, 68375547, 202336092, 598817490, 1772479905, 5247421410, 15538054455, 46019183840, 136325212750, 403933918375, 1197131976846, 3548715207534, 10521965227669
Offset: 3

Views

Author

Keywords

Comments

Binomial transform of A037955. - Paul Barry, Dec 28 2006
Apparently, the number of Dyck paths of semilength n that contain at least one UUU but avoid UUU's starting above level 0. - David Scambler, Jul 02 2013
a(n) = number of paths in the half-plane x >= 0 from (0,0) to (n-1,2) or (n-1,-3), and consisting of steps U=(1,1), D=(1,-1) and H=(1,0). For example, for n=5, we have the 14 paths: HHUU, UUHH, UHHU, HUUH, HUHU, UHUH, UDUU, UUDU, UUUD, DUUU, DDDH, HDDD, DHDD, DDHD. - José Luis Ramírez Ramírez, Apr 19 2015

Examples

			G.f. = x^3 + 4*x^4 + 14*x^5 + 45*x^6 + 140*x^7 + 427*x^8 + 1288*x^9 + 3858*x^10 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005773.
k=2 column of array in A038622.

Programs

  • Haskell
    a005775 = flip a038622 2 . (subtract 1)  -- Reinhard Zumkeller, Feb 26 2013
  • Maple
    seq(simplify(GegenbauerC(n-4,-n+1,-1/2) + GegenbauerC(n-3,-n+1,-1/2)),n=3..28); # Peter Luschny, May 12 2016
  • Mathematica
    nmax = 28; t[n_ /; n > 0, k_ /; k >= 1] := t[n, k] = t[n-1, k-1] + t[n-1, k] + t[n-1, k+1]; t[0, 0] = 1; t[0, ] = 0; t[?Negative, ?Negative] = 0; t[n, 0] := 2*t[n-1, 0] + t[n-1, 1]; a[n_] := t[n-1, 2]; Table[a[n], {n, 3, nmax} ] (* Jean-François Alcover, Jul 03 2013, from A038622 *)
  • PARI
    {a(n) = polcoeff( (x^2 + x - 1 + (x^2 - 3*x + 1) * sqrt((1 + x) / (1 - 3*x) + x^3 * O(x^n))) / (2*x^2), n)};
    
  • PARI
    {a(n) = n--; sum(k=0, n, binomial(n, k) * binomial(k, k\2 -1))}; /* Michael Somos, May 12 2016 */
    

Formula

D-finite with recurrence (n+2)*(n-3)*a(n) = 2*n*(n-1)*a(n-1) + 3*(n-1)*(n-2)*a(n-2), a(2)=0, a(3)=1. - Michael Somos, Feb 02 2002
G.f.: (x^2 + x - 1 +(x^2 - 3*x + 1)*sqrt((1+x)/(1-3*x)))/(2*x^2).
From Paul Barry, Dec 28 2006: (Start)
E.g.f.: exp(x)*(Bessel_I(2,2*x) + Bessel_I(3,2*x));
a(n+1) = Sum_{k=0..n} C(n,k)*C(k,floor(k/2)-1). (End)
a(n) ~ 3^(n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 25 2014
G.f.: (z^3*M(z)^2+z^4*M(z)^3)/(1-z-2*z^2*M(z)), where M(z) is the g.f. of Motzkin paths. - José Luis Ramírez Ramírez, Apr 19 2015
a(n) = GegenbauerC(n-4,-n+1,-1/2) + GegenbauerC(n-3,-n+1,-1/2). - Peter Luschny, May 12 2016
0 = a(n)*(+9*a(n+1) - 63*a(n+2) - 54*a(n+3) + 87*a(n+4) - 21*a(n+5))+ a(n+1)*(+21*a(n+1) + 79*a(n+2) + 13*a(n+3) - 118*a(n+4) + 35*a(n+5)) + a(n+2)*(-14*a(n+2) + 79*a(n+3) - 67*a(n+4) + 14*a(n+5)) + a(n+3)*(+6*a(n+3) + 19*a(n+4) - 11*a(n+5)) + a(n+4)*(+a(n+4) + a(n+5)) if n >= 0. - Michael Somos, May 12 2016
a(n) = A005773(n) - A001006(n) for n >= 3. - John Keith, Nov 20 2020

Extensions

More terms from Randall L Rathbun, Jan 19 2002
Edited by Michael Somos, Feb 02 2002

A122896 Riordan array (1, (1 - x - sqrt(1 - 2*x - 3*x^2)) / (2*x)), a Riordan array for directed animals. Triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 5, 3, 1, 0, 9, 12, 9, 4, 1, 0, 21, 30, 25, 14, 5, 1, 0, 51, 76, 69, 44, 20, 6, 1, 0, 127, 196, 189, 133, 70, 27, 7, 1, 0, 323, 512, 518, 392, 230, 104, 35, 8, 1, 0, 835, 1353, 1422, 1140, 726, 369, 147, 44, 9, 1
Offset: 0

Views

Author

Paul Barry, Sep 18 2006

Keywords

Comments

Also the convolution triangle of the Motzkin numbers A001006. - Peter Luschny, Oct 08 2022

Examples

			Triangle begins:
[0] 1;
[1] 0,   1;
[2] 0,   1,   1;
[3] 0,   2,   2,   1;
[4] 0,   4,   5,   3,   1;
[5] 0,   9,  12,   9,   4,   1;
[6] 0,  21,  30,  25,  14,   5,   1;
[7] 0,  51,  76,  69,  44,  20,   6,  1;
[8] 0, 127, 196, 189, 133,  70,  27,  7, 1;
[9] 0, 323, 512, 518, 392, 230, 104, 35, 8, 1.
		

Crossrefs

Row sums are A005773, number of directed animals of size n.
Product of A007318 and this sequence is A122897.

Programs

  • Maple
    T := proc(n,k) option remember;
    if k=0 then return 0^n fi; if k>n then return 0 fi;
    T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) end:
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, Aug 17 2016
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> simplify(hypergeom([1 -n/2, -n/2+1/2], [2], 4))); # Peter Luschny, Oct 08 2022
  • Mathematica
    T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0, ] = 0;
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(1, (1-x-sqrt(1-2*x-3*x^2))/(2*x), 11) # Peter Luschny, Aug 17 2016

Formula

Inverse of Riordan array (1, x / (1 + x + x^2)).
T(n+1, k+1) = A064189(n, k). - Philippe Deléham, Apr 21 2007
Riordan array (1, x*m(x)) where m(x) is the g.f. of Motzkin numbers (A001006). - Philippe Deléham, Nov 04 2009

A123160 Triangle read by rows: T(n,k) = n!*(n+k-1)!/((n-k)!*(n-1)!*(k!)^2) for 0 <= k <= n, with T(0,0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 9, 18, 10, 1, 16, 60, 80, 35, 1, 25, 150, 350, 350, 126, 1, 36, 315, 1120, 1890, 1512, 462, 1, 49, 588, 2940, 7350, 9702, 6468, 1716, 1, 64, 1008, 6720, 23100, 44352, 48048, 27456, 6435, 1, 81, 1620, 13860, 62370, 162162, 252252, 231660, 115830, 24310
Offset: 0

Views

Author

Roger L. Bagula, Oct 02 2006

Keywords

Comments

T(n,k) is also the number of order-preserving partial transformations (of an n-element chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Aug 25 2008

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1,  9,  18,  10;
  1, 16,  60,  80,  35;
  1, 25, 150, 350, 350, 126;
  ...
		

References

  • Frederick T. Wall, Chemical Thermodynamics, W. H. Freeman, San Francisco, 1965 pages 296 and 305

Crossrefs

Programs

  • Magma
    [Binomial(n,k)*Binomial(n+k-1,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2022
    
  • Maple
    T:=proc(n,k) if k=0 and n=0 then 1 elif k<=n then n!*(n+k-1)!/(n-k)!/(n-1)!/(k!)^2 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, m_]= If [n==m==0, 1, n!*(n+m-1)!/((n-m)!*(n-1)!(m!)^2)];
    Table[T[n, m], {n,0,10}, {m,0,n}]//Flatten
    max = 9; s = (x+1)/(2*Sqrt[(1-x)^2-4*y])+1/2 + O[x]^(max+2) + O[y]^(max+2); T[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[T[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 18 2015, after Vladimir Kruchinin *)
  • SageMath
    def A123160(n,k): return binomial(n, k)*binomial(n+k-1, k)
    flatten([[A123160(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2022

Formula

T(n, m) = n!*(n + m - 1)!/((n - m)!*(n - 1)!(m!)^2), with T(0, 0) = 1.
T(n, k) = binomial(n,k)*binomial(n+k-1,k). The row polynomials (except the first) are (1+x)*P(n,0,1,2x+1), where P(n,a,b,x) denotes the Jacobi polynomial. The columns of this triangle give the diagonals of A122899. - Peter Bala, Jan 24 2008
T(n, k) = binomial(n,k)*(n+k-1)!/((n-1)!*k!).
T(n, k)= binomial(n,k)*binomial(n+k-1,n-1). - Abdullahi Umar, Aug 25 2008
G.f.: (x+1)/(2*sqrt((1-x)^2-4*y)) + 1/2. - Vladimir Kruchinin, Jun 16 2015
From _Peter Bala, Jul 20 2015: (Start)
O.g.f. (1 + x)/( 2*sqrt((1 - x)^2 - 4*x*y) ) + 1/2 = 1 + (1 + y)*x + (1 + 4*y + 3*y^2)*x^2 + ....
For n >= 1, the n-th row polynomial R(n,y) = (1 + y)*r(n-1,y), where r(n,y) is the n-th row polynomial of A178301.
exp( Sum_{n >= 1} R(n,y)*x^n/n ) = 1 + (1 + y)*x + (1 + 3*y + 2*y^2)*x^2 + ... is the o.g.f for A088617. (End)
From G. C. Greubel, Jun 19 2022: (Start)
T(n, n) = A088218(n).
T(n, n-1) = A037965(n).
T(n, n-2) = A085373(n-2).
Sum_{k=0..n} T(n, k) = A123164(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A005773(n). (End)

Extensions

Edited by N. J. A. Sloane, Oct 26 2006 and Jul 03 2008

A183419 T(n,k)=Number of nXk 0..2 arrays with each sum of a(1..i,1..j) no greater than i*j.

Original entry on oeis.org

2, 5, 5, 13, 34, 13, 35, 249, 249, 35, 96, 1920, 5257, 1920, 96, 267, 15232, 118128, 118128, 15232, 267, 750, 123323, 2748326, 7798591, 2748326, 123323, 750, 2123, 1012996, 65521060, 535504390, 535504390, 65521060, 1012996, 2123, 6046, 8413325
Offset: 1

Views

Author

R. H. Hardin Jan 04 2011

Keywords

Comments

Table starts
.....2.........5.............13..................35....................96
.....5........34............249................1920.................15232
....13.......249...........5257..............118128...............2748326
....35......1920.........118128.............7798591.............535504390
....96.....15232........2748326...........535504390..........108917015732
...267....123323.......65521060.........37791169786........22819790947743
...750...1012996.....1589310971.......2719090433234......4882354760830113
..2123...8413325....39061152272.....198527626261156...1061262556019472565
..6046..70482133...969912553822...14661270464301970.233540084105702534983
.17303.594587235.24282796177101.1092691428398410348

Examples

			Some solutions for 5X4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..1..1....0..0..2..1....0..0..2..0....0..1..0..0....0..0..1..1
..1..1..0..2....0..0..2..1....0..0..1..0....1..1..1..1....0..2..2..2
..2..1..2..0....2..1..0..0....0..2..1..0....0..2..2..0....1..2..2..1
		

Crossrefs

Column 1 is A005773(n+1)

A261588 5-Modular Catalan Numbers C_{n,5}.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 131, 420, 1375, 4576, 15431, 52603, 180957, 627340, 2189430, 7685785, 27118855, 96123508, 342099955, 1221979374, 4379357895, 15742077045, 56742085710, 205041235750, 742647580815, 2695585363122, 9803561513316, 35720226039252, 130373533268780
Offset: 0

Views

Author

Nickolas Hein, Aug 25 2015

Keywords

Comments

Definition: Given a primitive k-th root of unity w, a binary operation a*b=a+wb, and sufficiently general fixed complex numbers x_0, ..., x_n, the k-modular Catalan numbers C_{n,k} enumerate parenthesizations of x_0*x_1*...*x_n that give distinct values.
Theorem: C_{n,k} enumerates the following objects:
(1) binary trees with n internal nodes avoiding a certain subtree (i.e., comb_k^{+1}),
(2) plane trees with n+1 nodes whose non-root nodes have degree less than k,
(3) Dyck paths of length 2n avoiding a down-step followed immediately by k consecutive up-steps,
(4) partitions with n nonnegative parts bounded by the staircase partition (n-1,n-2,...,1,0) such that each positive number appears fewer than k times,
(5) standard 2-by-n Young tableaux whose top row avoids contiguous labels of the form i,j+1,j+2,...,j+k for all i
(6) permutations of {1,2,...,n} avoiding 1-3-2 and 23...(k+1)1.

Examples

			The Catalan number C_6=132 counts the parenthesizations of x_1*...*x_7 where * is arbitrary. Defining * and w as above and writing x_i compactly as xi, we have x1*(x2*(x3*(x4*(x5*(x6*(x7)))))) = x1+wx2+w^2x3+w^3x4+w^4x5+x6+wx7 = x1*(x2*(x3*(x4*(x5*(x6)))))*(x7). For n=6 and k=5, these are the only parenthesizations that give the same value for x1*...*x7, so C_{6,5}=132-1=131.
		

Crossrefs

Column k=5 of A295679.
C_{n,1} is the all 1's sequence A000012. For C_{n,k} with k=2,3,4 see A011782, A005773, A159772. For k=6,7,8,9 see A261589, A261590, A261591, A261592.
Cf. A036766.

Programs

  • Mathematica
    terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]];
    col[5] (* Jean-François Alcover, Dec 05 2017, after Andrew Howroyd *)
  • PARI
    Vec(1/(1-serreverse(x*(1-x)/(1-x^5) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
    
  • Sage
    def C(k):
        print(1)
        for n in range(1,51):
            f = ((1-x^k)/(1-x))^n # ((x+1)^2-x^2*(x/(x+1))^(k-2))^n
            f = f.simplify_full()
            C = 0
            for i in range(n):
                C = C + (n-i)*f.coefficient(x,i)/n
            print(C)
    time C(5)

Formula

sum( 1<=l<=n, (l/n)sum( m_1+...+m_k=n and m_2+2m_3+...+(k-1)m_k=n-l, MC(n;m_1,...,m_k) ) ), where MC(n;m_1,...,m_k) is the multinomial coefficient associated to the multiset (m_1,...,m_k).
G.f.: 1/(1-x*G(x)) where G(x) is g.f. of A036766. - Andrew Howroyd, Dec 04 2017
Recurrence: 3*n*(3*n - 2)*(3*n - 1)*(1309*n^5 - 14388*n^4 + 60934*n^3 - 124236*n^2 + 121825*n - 45948)*a(n) = (299761*n^8 - 3779182*n^7 + 19492177*n^6 - 53378731*n^5 + 84116656*n^4 - 77081911*n^3 + 39268230*n^2 - 9775512*n + 829440)*a(n-1) - 5*(119119*n^8 - 1601215*n^7 + 8920729*n^6 - 26755339*n^5 + 46820344*n^4 - 48217102*n^3 + 27785664*n^2 - 7773768*n + 712800)*a(n-2) - 25*(n-3)*(1309*n^7 - 11770*n^6 + 38824*n^5 - 62344*n^4 + 74887*n^3 - 107794*n^2 + 101952*n - 33120)*a(n-3) - 125*(n-4)*(n-3)*(1309*n^6 - 10461*n^5 + 28528*n^4 - 30261*n^3 + 7999*n^2 + 3390*n - 1080)*a(n-4) - 625*(n-5)*(n-4)*(n-3)*(1309*n^5 - 7843*n^4 + 16472*n^3 - 14672*n^2 + 5148*n - 504)*a(n-5). - Vaclav Kotesovec, Dec 05 2017

A261589 6-Modular Catalan Numbers C_{n,6}.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 428, 1420, 4796, 16432, 56966, 199444, 704146, 2504000, 8960445, 32241670, 116580200, 423372684, 1543542369, 5647383786, 20728481590, 76305607480, 281648344965, 1042139463066, 3864822037106, 14362983740692, 53481776523398
Offset: 0

Author

Nickolas Hein, Aug 25 2015

Keywords

Comments

Definition: Given a primitive k-th root of unity w, a binary operation a*b=a+wb, and sufficiently general fixed complex numbers x_0, ..., x_n, the k-modular Catalan numbers C_{n,k} enumerate parenthesizations of x_0*x_1*...*x_n that give distinct values.
Theorem: C_{n,k} enumerates the following objects:
(1) binary trees with n internal nodes avoiding a certain subtree (i.e., comb_k^{+1}),
(2) plane trees with n+1 nodes whose non-root nodes have degree less than k,
(3) Dyck paths of length 2n avoiding a down-step followed immediately by k consecutive up-steps,
(4) partitions with n nonnegative parts bounded by the staircase partition (n-1,n-2,...,1,0) such that each positive number appears fewer than k times,
(5) standard 2-by-n Young tableaux whose top row avoids contiguous labels of the form i,j+1,j+2,...,j+k for all i
(6) permutations of {1,2,...,n} avoiding 1-3-2 and 23...(k+1)1.

Examples

			The Catalan number C_7=429 counts the parenthesizations of x_1*...*x_8 where * is arbitrary. Defining * and w as above and writing x_i compactly as xi, we have x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8))))))) = x1+wx2+w^2x3+w^3x4+w^4x5+w^5x6+x7+wx8 = x1*(x2*(x3*(x4*(x5*(x6*(x7))))))*(x8). For n=7 and k=6, these are the only parenthesizations that give the same value for x1*...*x8, so C_{7,6}=429-1=428.
		

Crossrefs

Column k=6 of A295679.
C_{n,1} is the all 1's sequence A000012. For C_{n,k} with k=2,3,4 see A011782, A005773, A159772. For k=5,7,8,9 see A261588, A261590, A261591, A261592.
Cf. A036767.

Programs

  • Mathematica
    terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]];
    col[6] (* Jean-François Alcover, Dec 05 2017, after Andrew Howroyd *)
  • PARI
    Vec(1/(1-serreverse(x*(1-x)/(1-x^6) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
    
  • Sage
    def C(k):
        print(1)
        for n in range(1,51):
            f = ((1-x^k)/(1-x))^n # ((x+1)^2-x^2*(x/(x+1))^(k-2))^n
            f = f.simplify_full()
            C = 0
            for i in range(n):
                C = C + (n-i)*f.coefficient(x,i)/n
            print(C)
    time C(6)

Formula

sum( 1<=l<=n, (l/n)sum( m_1+...+m_k=n and m_2+2m_3+...+(k-1)m_k=n-l , MC(n;m_1,...,m_k) ) ), where MC(n;m_1,...,m_k) is the multinomial coefficient associated to the multiset (m_1,...,m_k).
G.f.: 1/(1-x*G(x)) where G(x) is g.f. of A036767. - Andrew Howroyd, Dec 04 2017
Recurrence: 8*n*(2*n - 1)*(4*n - 3)*(4*n - 1)*(10916887*n^9 - 249224042*n^8 + 2469255538*n^7 - 13933215932*n^6 + 49334513763*n^5 - 113647334214*n^4 + 170286019860*n^3 - 160004333492*n^2 + 85539013792*n - 19822693440)*a(n) = 3*(9508608577*n^13 - 237215797097*n^12 + 2623858643982*n^11 - 16999631384890*n^10 + 71778494499061*n^9 - 207873203457553*n^8 + 423002845054480*n^7 - 609054955793764*n^6 + 616019881995932*n^5 - 427963644130760*n^4 + 195602628794128*n^3 - 54415561156256*n^2 + 7923069832320*n - 416553984000)*a(n-1) - 6*(12412500519*n^13 - 321587757141*n^12 + 3711217654502*n^11 - 25208616228279*n^10 + 112156507241451*n^9 - 344001598358364*n^8 + 745080116604760*n^7 - 1147205777244243*n^6 + 1245874269527820*n^5 - 932293147229545*n^4 + 459871406685588*n^3 - 138195004254428*n^2 + 21782980665360*n - 1261019808000)*a(n-2) + 36*(n-3)*(687763881*n^12 - 16781886459*n^11 + 179899148857*n^10 - 1116006568486*n^9 + 4439364432038*n^8 - 11848465605195*n^7 + 21556040876457*n^6 - 26592812193824*n^5 + 21678236082931*n^4 - 11083403407596*n^3 + 3237388989236*n^2 - 458954256240*n + 24454886400)*a(n-3) - 216*(n-4)*(n-3)*(10916887*n^11 - 205556494*n^10 + 1637060823*n^9 - 7312163106*n^8 + 20993566701*n^7 - 44229711078*n^6 + 78086672677*n^5 - 116636175274*n^4 + 128035289512*n^3 - 87494286088*n^2 + 31392748560*n - 4319092800)*a(n-4) - 1296*(n-5)*(n-4)*(n-3)*(10916887*n^10 - 183722720*n^9 + 1276350867*n^8 - 4759019384*n^7 + 10358683545*n^6 - 13414621556*n^5 + 10161953673*n^4 - 4442494876*n^3 + 1316475548*n^2 - 382696304*n + 67140480)*a(n-5) - 7776*(n-6)*(n-5)*(n-4)*(n-3)*(10916887*n^9 - 150972059*n^8 + 868471134*n^7 - 2709681834*n^6 + 5008565879*n^5 - 5619215727*n^4 + 3761917980*n^3 - 1414279492*n^2 + 261591168*n - 17081280)*a(n-6). - Vaclav Kotesovec, Dec 05 2017

A261590 7-Modular Catalan Numbers C_{n,7}.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1429, 4851, 16718, 58331, 205632, 731272, 2620176, 9449695, 34276230, 124959485, 457621780, 1682686509, 6209928010, 22993696620, 85396852670, 318034472365, 1187429860461, 4443824658798, 16666506959312, 62632954529054
Offset: 0

Author

Nickolas Hein, Aug 25 2015

Keywords

Comments

Definition: Given a primitive k-th root of unity w, a binary operation a*b=a+wb, and sufficiently general fixed complex numbers x_0, ..., x_n, the k-modular Catalan numbers C_{n,k} enumerate parenthesizations of x_0*x_1*...*x_n that give distinct values.
Theorem: C_{n,k} enumerates the following objects:
(1) binary trees with n internal nodes avoiding a certain subtree (i.e., comb_k^{+1}),
(2) plane trees with n+1 nodes whose non-root nodes have degree less than k,
(3) Dyck paths of length 2n avoiding a down-step followed immediately by k consecutive up-steps,
(4) partitions with n nonnegative parts bounded by the staircase partition (n-1,n-2,...,1,0) such that each positive number appears fewer than k times,
(5) standard 2-by-n Young tableaux whose top row avoids contiguous labels of the form i,j+1,j+2,...,j+k for all i
(6) permutations of {1,2,...,n} avoiding 1-3-2 and 23...(k+1)1.

Examples

			The Catalan number C_8=1430 counts the parenthesizations of x_1*...*x_9 where * is arbitrary. Defining * and w as above and writing x_i compactly as xi, we have x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8*(x9)))))))) = x1+wx2+w^2x3+w^3x4+w^4x5+w^5x6+w^6x7+x8+wx9 = x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8)))))))*(x9). For n=8 and k=7, these are the only parenthesizations that give the same value for x1*...*x9, so C_{8,7}=1430-1=1429.
		

Crossrefs

Column k=7 of A295679.
C_{n,1} is the all 1's sequence A000012. For C_{n,k} with k=2,3,4 see A011782, A005773, A159772. For k=5,6,8,9 see A261588, A261589, A261591, A261592.
Cf. A036768.

Programs

  • Mathematica
    terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]];
    col[7] (* Jean-François Alcover, Dec 05 2017, after Andrew Howroyd *)
  • PARI
    Vec(1/(1-serreverse(x*(1-x)/(1-x^7) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
    
  • Sage
    def C(k):
        print(1)
        for n in range(1,51):
            f = ((1-x^k)/(1-x))^n # ((x+1)^2-x^2*(x/(x+1))^(k-2))^n
            f = f.simplify_full()
            C = 0
            for i in range(n):
                C = C + (n-i)*f.coefficient(x,i)/n
            print(C)
    time C(7)

Formula

sum( 1<=l<=n, (l/n)sum( m_1+...+m_k=n and m_2+2m_3+...+(k-1)m_k=n-l , MC(n;m_1,...,m_k) ) ), where MC(n;m_1,...,m_k) is the multinomial coefficient associated to the multiset (m_1,...,m_k).
G.f.: 1/(1-x*G(x)) where G(x) is g.f. of A036768. - Andrew Howroyd, Dec 04 2017

A261591 8-Modular Catalan Numbers C_{n,8}.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16784, 58695, 207452, 739840, 2658936, 9620232, 35011566, 128082523, 470731970, 1737220254, 6435115168, 23918062480, 89172805980, 333396591075, 1249717509612, 4695654554206, 17682176062376, 66720743308877
Offset: 0

Author

Nickolas Hein, Aug 25 2015

Keywords

Comments

Definition: Given a primitive k-th root of unity w, a binary operation a*b=a+wb, and sufficiently general fixed complex numbers x_0, ..., x_n, the k-modular Catalan numbers C_{n,k} enumerate parenthesizations of x_0*x_1*...*x_n that give distinct values.
Theorem: C_{n,k} enumerates the following objects:
(1) binary trees with n internal nodes avoiding a certain subtree (i.e., comb_k^{+1}),
(2) plane trees with n+1 nodes whose non-root nodes have degree less than k,
(3) Dyck paths of length 2n avoiding a down-step followed immediately by k consecutive up-steps,
(4) partitions with n nonnegative parts bounded by the staircase partition (n-1,n-2,...,1,0) such that each positive number appears fewer than k times,
(5) standard 2-by-n Young tableaux whose top row avoids contiguous labels of the form i,j+1,j+2,...,j+k for all i
(6) permutations of {1,2,...,n} avoiding 1-3-2 and 23...(k+1)1.

Examples

			The Catalan number C_9=4862 counts the parenthesizations of x_1*...*x_10 where * is arbitrary. Defining * and w as above and writing x_i compactly as xi, we have x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8*(x9*(x10))))))))) = x1+wx2+w^2x3+w^3x4+w^4x5+w^5x6+w^6x7+w^7x8+x9+wx10 = x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8*(x9))))))))*(x10). For n=9 and k=8, these are the only parenthesizations that give the same value for x1*...*x10, so C_{9,8}=4862-1=4861.
		

Crossrefs

Column k=8 of A295679.
C_{n,1} is the all 1's sequence A000012. For C_{n,k} with k=2,3,4 see A011782, A005773, A159772. For k=5,6,7,9 see A261588, A261589, A261590, A261592.
Cf. A036769.

Programs

  • Mathematica
    terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]];
    col[8] (* Jean-François Alcover, Dec 05 2017, after Andrew Howroyd *)
  • PARI
    Vec(1/(1-serreverse(x*(1-x)/(1-x^8) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
    
  • Sage
    def C(k):
        print(1)
        for n in range(1,51):
            f = ((1-x^k)/(1-x))^n # ((x+1)^2-x^2*(x/(x+1))^(k-2))^n
            f = f.simplify_full()
            C = 0
            for i in range(n):
                C = C + (n-i)*f.coefficient(x,i)/n
            print(C)
    time C(8)

Formula

sum( 1<=l<=n, (l/n)sum( m_1+...+m_k=n and m_2+2m_3+...+(k-1)m_k=n-l , MC(n;m_1,...,m_k) ) ), where MC(n;m_1,...,m_k) is the multinomial coefficient associated to the multiset (m_1,...,m_k).
G.f.: 1/(1-x*G(x)) where G(x) is g.f. of A036769. - Andrew Howroyd, Dec 04 2017

A261592 9-Modular Catalan Numbers C_{n,9}.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, 58773, 207907, 742220, 2670564, 9674496, 35256723, 129164090, 475418625, 1757248194, 6519768464, 24272733060, 90648139140, 339497371575, 1274821281747, 4798525000860, 18102238168134, 68430875696534
Offset: 0

Author

Nickolas Hein, Aug 25 2015

Keywords

Comments

Definition: Given a primitive k-th root of unity w, a binary operation a*b=a+wb, and sufficiently general fixed complex numbers x_0, ..., x_n, the k-modular Catalan numbers C_{n,k} enumerate parenthesizations of x_0*x_1*...*x_n that give distinct values.
Theorem: C_{n,k} enumerates the following objects:
(1) binary trees with n internal nodes avoiding a certain subtree (i.e., comb_k^{+1}),
(2) plane trees with n+1 nodes whose non-root nodes have degree less than k,
(3) Dyck paths of length 2n avoiding a down-step followed immediately by k consecutive up-steps,
(4) partitions with n nonnegative parts bounded by the staircase partition (n-1,n-2,...,1,0) such that each positive number appears fewer than k times,
(5) standard 2-by-n Young tableaux whose top row avoids contiguous labels of the form i,j+1,j+2,...,j+k for all i
(6) permutations of {1,2,...,n} avoiding 1-3-2 and 23...(k+1)1.

Examples

			The Catalan number C_10=16796 counts the parenthesizations of x_1*...*x_11 where * is arbitrary. Defining * and w as above and writing x_i compactly as xi, we have x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8*(x9*(x10*(x11)))))))))) = x1+wx2+w^2x3+w^3x4+w^4x5+w^5x6+w^6x7+w^7x8+w^8x9+x10+wx11 = x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8*(x9*(x10)))))))))*(x11). For n=10 and k=9, these are the only parenthesizations that give the same value for x1*...*x11, so C_{10,9}=16796-1=16795.
		

Crossrefs

Column k=9 of A295679.
C_{n,1} is the all 1's sequence A000012. For C_{n,k} with k=2,3,4 see A011782, A005773, A159772. For k=5,6,7,8 see A261588, A261589, A261590, A261591.
Cf. A291823.

Programs

  • Mathematica
    terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]];
    col[9] (* Jean-François Alcover, Dec 05 2017, after Andrew Howroyd *)
  • PARI
    Vec(1/(1-serreverse(x*(1-x)/(1-x^9) + O(x*x^25)))) \\ Andrew Howroyd, Nov 29 2017
    
  • Sage
    def C(k):
        print(1)
        for n in range(1,51):
            f = ((1-x^k)/(1-x))^n # ((x+1)^2-x^2*(x/(x+1))^(k-2))^n
            f = f.simplify_full()
            C = 0
            for i in range(n):
                C = C + (n-i)*f.coefficient(x,i)/n
            print(C)
    time C(9)

Formula

sum( 1<=l<=n, (l/n)sum( m_1+...+m_k=n and m_2+2m_3+...+(k-1)m_k=n-l , MC(n;m_1,...,m_k) ) ), where MC(n;m_1,...,m_k) is the multinomial coefficient associated to the multiset (m_1,...,m_k).
G.f.: 1/(1-x*G(x)) where G(x) is g.f. of A291823. - Andrew Howroyd, Nov 29 2017

A047266 Numbers that are congruent to {0, 1, 5} mod 6.

Original entry on oeis.org

0, 1, 5, 6, 7, 11, 12, 13, 17, 18, 19, 23, 24, 25, 29, 30, 31, 35, 36, 37, 41, 42, 43, 47, 48, 49, 53, 54, 55, 59, 60, 61, 65, 66, 67, 71, 72, 73, 77, 78, 79, 83, 84, 85, 89, 90, 91, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114, 115, 119, 120, 121, 125
Offset: 1

Keywords

Comments

a(n+3) is the Hankel transform of A005773(n+3). - Paul Barry, Nov 04 2008
The numbers m == 0, 2 or 10 mod 12 (the doubles of this sequence, that is, 10, 12, 14, 22, 24, 26, 34, ...) have the property that exactly 1/4 of the 3-part partitions of m form the sides of a triangle. See Mathematics Stack Exchange, 2013, link. - Ed Pegg Jr, Dec 19 2013
Row sum of a triangle where two rules build the triangle. #1 Start with the value "1" at the top of the triangle. #2 Require every "triple" to contain the values 1,2,3 (see link below). Compare with A136289 that has "3" at the apex. - Craig Knecht, Oct 17 2015
Nonnegative m such that floor(k*m^2/6) = k*floor(m^2/6), where k = 2, 3, 4 or 5. - Bruno Berselli, Dec 03 2015

Programs

  • Magma
    [n : n in [0..150] | n mod 6 in [0, 1, 5]]; // Wesley Ivan Hurt, Jun 13 2016
  • Maple
    seq(seq(6*s+j, j=[0,1,5]), s=0..100); # Robert Israel, Dec 01 2014
  • Mathematica
    Select[Range[0, 200], Mod[#, 6] == 0 || Mod[#, 6] == 1 || Mod[#, 6] == 5 &] (* Vladimir Joseph Stephan Orlovsky, Jul 07 2011 *)
  • PARI
    concat(0, Vec(x^2*(1+4*x+x^2)/((1+x+x^2)*(x-1)^2) + O(x^100))) \\ Altug Alkan, Oct 17 2015
    

Formula

G.f.: x^2*(1+4*x+x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = 2*(n-1) + A057078(n). - Robert Israel, Dec 01 2014
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. - Wesley Ivan Hurt, Nov 09 2015
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = 2*n-2+cos(2*n*Pi/3)+sin(2*n*Pi/3)/sqrt(3).
a(3k) = 6k-1, a(3k-1) = 6k-5, a(3k-2) = 6k-6. (End)
Sum_{n>=2} (-1)^n/a(n) = log(2)/6 + log(2 + sqrt(3))/sqrt(3). - Amiram Eldar, Dec 14 2021
Previous Showing 31-40 of 103 results. Next