A005775
Number of compact-rooted directed animals of size n having 3 source points.
Original entry on oeis.org
1, 4, 14, 45, 140, 427, 1288, 3858, 11505, 34210, 101530, 300950, 891345, 2638650, 7809000, 23107488, 68375547, 202336092, 598817490, 1772479905, 5247421410, 15538054455, 46019183840, 136325212750, 403933918375, 1197131976846, 3548715207534, 10521965227669
Offset: 3
G.f. = x^3 + 4*x^4 + 14*x^5 + 45*x^6 + 140*x^7 + 427*x^8 + 1288*x^9 + 3858*x^10 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a005775 = flip a038622 2 . (subtract 1) -- Reinhard Zumkeller, Feb 26 2013
-
seq(simplify(GegenbauerC(n-4,-n+1,-1/2) + GegenbauerC(n-3,-n+1,-1/2)),n=3..28); # Peter Luschny, May 12 2016
-
nmax = 28; t[n_ /; n > 0, k_ /; k >= 1] := t[n, k] = t[n-1, k-1] + t[n-1, k] + t[n-1, k+1]; t[0, 0] = 1; t[0, ] = 0; t[?Negative, ?Negative] = 0; t[n, 0] := 2*t[n-1, 0] + t[n-1, 1]; a[n_] := t[n-1, 2]; Table[a[n], {n, 3, nmax} ] (* Jean-François Alcover, Jul 03 2013, from A038622 *)
-
{a(n) = polcoeff( (x^2 + x - 1 + (x^2 - 3*x + 1) * sqrt((1 + x) / (1 - 3*x) + x^3 * O(x^n))) / (2*x^2), n)};
-
{a(n) = n--; sum(k=0, n, binomial(n, k) * binomial(k, k\2 -1))}; /* Michael Somos, May 12 2016 */
A122896
Riordan array (1, (1 - x - sqrt(1 - 2*x - 3*x^2)) / (2*x)), a Riordan array for directed animals. Triangle read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 5, 3, 1, 0, 9, 12, 9, 4, 1, 0, 21, 30, 25, 14, 5, 1, 0, 51, 76, 69, 44, 20, 6, 1, 0, 127, 196, 189, 133, 70, 27, 7, 1, 0, 323, 512, 518, 392, 230, 104, 35, 8, 1, 0, 835, 1353, 1422, 1140, 726, 369, 147, 44, 9, 1
Offset: 0
Triangle begins:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 2, 2, 1;
[4] 0, 4, 5, 3, 1;
[5] 0, 9, 12, 9, 4, 1;
[6] 0, 21, 30, 25, 14, 5, 1;
[7] 0, 51, 76, 69, 44, 20, 6, 1;
[8] 0, 127, 196, 189, 133, 70, 27, 7, 1;
[9] 0, 323, 512, 518, 392, 230, 104, 35, 8, 1.
Row sums are
A005773, number of directed animals of size n.
-
T := proc(n,k) option remember;
if k=0 then return 0^n fi; if k>n then return 0 fi;
T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) end:
for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, Aug 17 2016
# Uses function PMatrix from A357368.
PMatrix(10, n -> simplify(hypergeom([1 -n/2, -n/2+1/2], [2], 4))); # Peter Luschny, Oct 08 2022
-
T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0, ] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
-
# uses[riordan_array from A256893]
riordan_array(1, (1-x-sqrt(1-2*x-3*x^2))/(2*x), 11) # Peter Luschny, Aug 17 2016
A123160
Triangle read by rows: T(n,k) = n!*(n+k-1)!/((n-k)!*(n-1)!*(k!)^2) for 0 <= k <= n, with T(0,0) = 1.
Original entry on oeis.org
1, 1, 1, 1, 4, 3, 1, 9, 18, 10, 1, 16, 60, 80, 35, 1, 25, 150, 350, 350, 126, 1, 36, 315, 1120, 1890, 1512, 462, 1, 49, 588, 2940, 7350, 9702, 6468, 1716, 1, 64, 1008, 6720, 23100, 44352, 48048, 27456, 6435, 1, 81, 1620, 13860, 62370, 162162, 252252, 231660, 115830, 24310
Offset: 0
Triangle begins:
1;
1, 1;
1, 4, 3;
1, 9, 18, 10;
1, 16, 60, 80, 35;
1, 25, 150, 350, 350, 126;
...
- Frederick T. Wall, Chemical Thermodynamics, W. H. Freeman, San Francisco, 1965 pages 296 and 305
-
[Binomial(n,k)*Binomial(n+k-1,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2022
-
T:=proc(n,k) if k=0 and n=0 then 1 elif k<=n then n!*(n+k-1)!/(n-k)!/(n-1)!/(k!)^2 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
T[n_, m_]= If [n==m==0, 1, n!*(n+m-1)!/((n-m)!*(n-1)!(m!)^2)];
Table[T[n, m], {n,0,10}, {m,0,n}]//Flatten
max = 9; s = (x+1)/(2*Sqrt[(1-x)^2-4*y])+1/2 + O[x]^(max+2) + O[y]^(max+2); T[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[T[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 18 2015, after Vladimir Kruchinin *)
-
def A123160(n,k): return binomial(n, k)*binomial(n+k-1, k)
flatten([[A123160(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2022
A183419
T(n,k)=Number of nXk 0..2 arrays with each sum of a(1..i,1..j) no greater than i*j.
Original entry on oeis.org
2, 5, 5, 13, 34, 13, 35, 249, 249, 35, 96, 1920, 5257, 1920, 96, 267, 15232, 118128, 118128, 15232, 267, 750, 123323, 2748326, 7798591, 2748326, 123323, 750, 2123, 1012996, 65521060, 535504390, 535504390, 65521060, 1012996, 2123, 6046, 8413325
Offset: 1
Some solutions for 5X4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..1..1....0..0..2..1....0..0..2..0....0..1..0..0....0..0..1..1
..1..1..0..2....0..0..2..1....0..0..1..0....1..1..1..1....0..2..2..2
..2..1..2..0....2..1..0..0....0..2..1..0....0..2..2..0....1..2..2..1
A261588
5-Modular Catalan Numbers C_{n,5}.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 131, 420, 1375, 4576, 15431, 52603, 180957, 627340, 2189430, 7685785, 27118855, 96123508, 342099955, 1221979374, 4379357895, 15742077045, 56742085710, 205041235750, 742647580815, 2695585363122, 9803561513316, 35720226039252, 130373533268780
Offset: 0
A261589
6-Modular Catalan Numbers C_{n,6}.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 132, 428, 1420, 4796, 16432, 56966, 199444, 704146, 2504000, 8960445, 32241670, 116580200, 423372684, 1543542369, 5647383786, 20728481590, 76305607480, 281648344965, 1042139463066, 3864822037106, 14362983740692, 53481776523398
Offset: 0
A261590
7-Modular Catalan Numbers C_{n,7}.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 132, 429, 1429, 4851, 16718, 58331, 205632, 731272, 2620176, 9449695, 34276230, 124959485, 457621780, 1682686509, 6209928010, 22993696620, 85396852670, 318034472365, 1187429860461, 4443824658798, 16666506959312, 62632954529054
Offset: 0
A261591
8-Modular Catalan Numbers C_{n,8}.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16784, 58695, 207452, 739840, 2658936, 9620232, 35011566, 128082523, 470731970, 1737220254, 6435115168, 23918062480, 89172805980, 333396591075, 1249717509612, 4695654554206, 17682176062376, 66720743308877
Offset: 0
A261592
9-Modular Catalan Numbers C_{n,9}.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, 58773, 207907, 742220, 2670564, 9674496, 35256723, 129164090, 475418625, 1757248194, 6519768464, 24272733060, 90648139140, 339497371575, 1274821281747, 4798525000860, 18102238168134, 68430875696534
Offset: 0
A047266
Numbers that are congruent to {0, 1, 5} mod 6.
Original entry on oeis.org
0, 1, 5, 6, 7, 11, 12, 13, 17, 18, 19, 23, 24, 25, 29, 30, 31, 35, 36, 37, 41, 42, 43, 47, 48, 49, 53, 54, 55, 59, 60, 61, 65, 66, 67, 71, 72, 73, 77, 78, 79, 83, 84, 85, 89, 90, 91, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114, 115, 119, 120, 121, 125
Offset: 1
-
[n : n in [0..150] | n mod 6 in [0, 1, 5]]; // Wesley Ivan Hurt, Jun 13 2016
-
seq(seq(6*s+j, j=[0,1,5]), s=0..100); # Robert Israel, Dec 01 2014
-
Select[Range[0, 200], Mod[#, 6] == 0 || Mod[#, 6] == 1 || Mod[#, 6] == 5 &] (* Vladimir Joseph Stephan Orlovsky, Jul 07 2011 *)
-
concat(0, Vec(x^2*(1+4*x+x^2)/((1+x+x^2)*(x-1)^2) + O(x^100))) \\ Altug Alkan, Oct 17 2015
Previous
Showing 31-40 of 103 results.
Next
Comments