cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 90 results. Next

A280952 Expansion of Product_{k>=0} 1/(1 - x^(5*k*(k+1)/2+1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 11, 11, 12, 12, 13, 14, 15, 15, 16, 16, 17, 18, 19, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 40, 42, 44, 45, 47, 49, 51, 53, 55, 56, 58, 60, 62, 64, 67, 68, 71, 74, 77, 79, 83, 85, 88, 91, 94, 96, 100
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 11 2017

Keywords

Comments

Number of partitions of n into centered pentagonal numbers (A005891).

Examples

			a(12) = 3 because we have [6, 6], [6, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<0, 0, (t->
          `if`(((t+1)*5*t+2)/2>n, t-1, t))(1+h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
          b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(((i+1)*5*i+2)/2)))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax = 88; CoefficientList[Series[Product[1/(1 - x^(5 k (k + 1)/2 + 1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1/(1 - x^(5*k*(k+1)/2+1)).

A069128 Centered 15-gonal numbers: a(n) = (15*n^2 - 15*n + 2)/2.

Original entry on oeis.org

1, 16, 46, 91, 151, 226, 316, 421, 541, 676, 826, 991, 1171, 1366, 1576, 1801, 2041, 2296, 2566, 2851, 3151, 3466, 3796, 4141, 4501, 4876, 5266, 5671, 6091, 6526, 6976, 7441, 7921, 8416, 8926, 9451, 9991, 10546, 11116, 11701, 12301, 12916, 13546, 14191, 14851, 15526
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Centered pentadecagonal numbers or centered quindecagonal numbers or centered pentakaidecagonal numbers. - Omar E. Pol, Oct 03 2011

Examples

			a(5) = 151 because (15*5^2 - 15*5 + 2)/2 = 151.
		

Crossrefs

Programs

Formula

a(n) = (15*n^2 - 15*n + 2)/2.
a(n) = 15*n+a(n-1)-15 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: -x*(1+13*x+x^2) / (x-1)^3. - R. J. Mathar, Feb 04 2011
Binomial transform of [1, 15, 15, 0, 0, 0, ...] and Narayana transform (A001263) of [1, 15, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
a(n) = A194715(n-1) + 1. - Omar E. Pol, Oct 03 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi*tan(sqrt(7/15)*Pi/2)/sqrt(105).
Sum_{n>=1} a(n)/n! = 17*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 17/(2*e) - 1. (End)
E.g.f.: exp(x)*(1 + 15*x^2/2) - 1. - Nikolaos Pantelidis, Feb 07 2023

A212656 a(n) = 5*n^2 + 1.

Original entry on oeis.org

1, 6, 21, 46, 81, 126, 181, 246, 321, 406, 501, 606, 721, 846, 981, 1126, 1281, 1446, 1621, 1806, 2001, 2206, 2421, 2646, 2881, 3126, 3381, 3646, 3921, 4206, 4501, 4806, 5121, 5446, 5781, 6126, 6481, 6846, 7221, 7606, 8001, 8406, 8821, 9246, 9681, 10126, 10581, 11046, 11521, 12006, 12501
Offset: 0

Views

Author

Alonso del Arte, May 23 2012

Keywords

Comments

Z[sqrt(-5)] is not a unique factorization domain, and some of the numbers in this sequence have two different factorizations in that domain, e.g., 21 = 3 * 7 = (1 + 2*sqrt(-5))*(1 - 2*sqrt(-5)). And of course some primes in Z are composite in Z[sqrt(-5)], like 181 = (1 + 6*sqrt(-5))*(1 - 6*sqrt(-5)).
These are pentagonal-star numbers. - Mario Cortés, Oct 26 2020

References

  • Benjamin Fine & Gerhard Rosenberger, Number Theory: An Introduction via the Distribution of Primes, Boston: Birkhäuser, 2007, page 268.

Crossrefs

Cf. A137530 (primes of the form 1+5*n^2).

Programs

Formula

a(n) = 5*n^2 + 1 = (1 + n*sqrt(-5))*(1 - n*sqrt(-5)).
G.f.: (1+3*x+6*x^2)/(1-x)^3. - Bruno Berselli, May 23 2012
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 10 2012
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(5))*coth(Pi/sqrt(5)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(5))*csch(Pi/sqrt(5)))/2. (End)
a(n) = A005891(n-1) + 5*A000217(n). - Mario Cortés, Oct 26 2020
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(5))*sinh(sqrt(2/5)*Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(5))*csch(Pi/sqrt(5)).(End)
E.g.f.: exp(x)*(1 + 5*x + 5*x^2). - Stefano Spezia, Feb 05 2021

A281083 Expansion of Product_{k>=0} (1 + x^(5*k*(k+1)/2+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 14 2017

Keywords

Comments

Number of partitions of n into distinct centered pentagonal numbers (A005891).

Examples

			a(82) = 2 because we have [76, 6] and [51, 31].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[1 + x^(5 k (k + 1)/2 + 1), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} (1 + x^(5*k*(k+1)/2+1)).

A348210 Varma's Kosta numbers of semi-standard tableaux: array A(n>=2, k>=0) read by rising antidiagonals.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 15, 16, 7, 1, 0, 1, 36, 65, 31, 9, 1, 0, 1, 91, 260, 175, 51, 11, 1, 0, 1, 232, 1085, 981, 369, 76, 13, 1, 0, 1, 603, 4600, 5719, 2661, 671, 106, 15, 1, 0, 1, 1585, 19845, 33922, 19929, 5916, 1105, 141, 17, 1, 0, 1, 4213, 86725, 204687, 151936, 54131, 11516, 1695, 181, 19, 1, 0
Offset: 2

Views

Author

R. J. Mathar, Oct 07 2021

Keywords

Comments

(More characteristic NAME desired.)
Each row is a polynomial in k, which implies that the inverse binomial transformation of each row is a finite sequence and that the row can be represented by a rational generating function (A348211).

Examples

			The array starts in row n=2 with columns k>=0 as:
  0   0    0    0     0     0      0      0 ...
  1   1    1    1     1     1      1      1 ...
  1   3    5    7     9    11     13     15 ...
  1   6   16   31    51    76    106    141 ...
  1  15   65  175   369   671   1105   1695 ...
  1  36  260  981  2661  5916  11516  20385 ...
  1  91 1085 5719 19929 54131 124501 254255 ...
Antidiagonal rows begin as:
  0;
  1,   0;
  1,   1,    0;
  1,   3,    1,    0;
  1,   6,    5,    1,    0;
  1,  15,   16,    7,    1,    0;
  1,  36,   65,   31,    9,    1,   0;
  1,  91,  260,  175,   51,   11,   1,   0;
  1, 232, 1085,  981,  369,   76,  13,   1,  0;
  1, 603, 4600, 5719, 2661,  671, 106,  15,  1,  0;
		

Crossrefs

Cf. A005043 (column k=1), A007043 (k=2), A264608 (k=3), A272393 (k=4), A005408 (row n=4), A005891 (n=5), A005917 (n=6), A348211 (condensed g.f.)

Programs

  • Magma
    A:= func< n,k | (&+[(-1)^(j+1)*Binomial(n,j)*Binomial((n-2*j)*k+n-j-2,n-3)/2 : j in [0..Floor((n-1)/2)]]) >;
    A348210:= func< n,k | A(n-k,k) >;
    [A348210(n,k): k in [0..n-2], n in [2..13]]; // G. C. Greubel, Feb 28 2024
    
  • Maple
    A348210 := proc(n,k)
        local a,j ;
        a := 0 ;
        for j from 0 to floor((n-1)/2) do
                a := a+ (-1)^j *binomial(n,j) *binomial( (n-2*j)*k+n-j-2,n-3) ;
        end do:
        -a/2 ;
    end proc:
    seq( seq( A348210(d-k,k),k=0..d-2),d=2..12) ;
  • Mathematica
    A[n_, k_] := (-1/2)*Sum[(-1)^j*Binomial[n, j]*Binomial[(n - 2*j)*k + n - j - 2, n - 3], {j, 0, Floor[(n - 1)/2]}];
    Table[A[n - k, k], {n, 2, 13}, {k, 0, n - 2}] // Flatten (* Jean-François Alcover, Mar 06 2023 *)
  • SageMath
    def A(n,k): return sum( (-1)^(j+1)*binomial(n,j)*binomial((n-2*j)*k+n-j-2,n-3) for j in range(1+(n-1)//2) )/2
    def A348210(n,k): return A(n-k, k)
    flatten([[A348210(n,k) for k in range(n-1)] for n in range(2,13)]) # G. C. Greubel, Feb 28 2024

Formula

A(n,k) = (-1/2)*Sum_{j=0..floor((n-1)/2)} (-1)^j *binomial(n,j) *binomial((n-2*j)*k+n-j-2,n-3).
A(7,k) = 1 + 7*k*(k+1)*(11*k^2+11*k+8)/12.
A(8,k) = (2*k+1)*(4*k^2+6*k+3)*(4*k^2+2*k+1)/3.
A(9,k) = 1 + k*(k+1)*(289*k^4+578*k^3+581*k^2+292*k+108)/16.

A145904 Square array read by antidiagonals: Hilbert transform of the Narayana numbers A001263.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 16, 7, 1, 1, 15, 40, 31, 9, 1, 1, 21, 85, 105, 51, 11, 1, 1, 28, 161, 295, 219, 76, 13, 1, 1, 36, 280, 721, 771, 396, 106, 15, 1, 1, 45, 456, 1582, 2331, 1681, 650, 141, 17, 1
Offset: 0

Views

Author

Peter Bala, Oct 31 2008

Keywords

Comments

Refer to A145905 for the definition of the Hilbert transform of a lower triangular array. For the Hilbert transform of A008459, the array of type B Narayana numbers, see A108625.
This seems to be a duplicate of A273350. - Alois P. Heinz, Jun 04 2016. This could probably be proved by showing that the g.f.s are the same. - N. J. A. Sloane, Jul 02 2016

Examples

			The array begins
n\k|..0.....1.....2.....3.....4.....5
=====================================
0..|..1.....1.....1.....1.....1.....1
1..|..1.....3.....5.....7.....9....11
2..|..1.....6....16....31....51....76
3..|..1....10....40...105...219...396
4..|..1....15....85...295...771..1681
5..|..1....21...161...721..2331..6083
...
Row 2: (1 + 3x + x^2)/(1 - x)^3 = 1 + 6x + 16x^2 + 31x^3 + ... .
Row 3: (1 + 6x + 6x^2 + x^3)/(1 - x)^4 = 1 + 10x + 40x^2 + 105x^3 + ... .
		

Crossrefs

Cf. A001263, A005891 (row 2), A063490 (row 3), A108625 (Hilbert transform of h-vectors of type B associahedra).
Cf. also A273350.

Programs

  • Mathematica
    Table[1/(# + 1)*Sum[Binomial[# + 1, i - 1] Binomial[# + 1, i] Binomial[# + k - i + 1, k + 1 - i], {i, 0, k + 1}] &[m - k], {m, 0, 9}, {k, 0, m}] // Flatten (* Michael De Vlieger, Jan 15 2018 *)
  • Maxima
    taylor(((y-1)*sqrt(((x^2+2*x+1)*y-x^2+2*x-1)/(y-1))+(-x-1)*y-x+1)/(2*x^2*y),x,0,10,y,0,10);
    T(n,m,k):=1/(n+1)*sum(binomial(n+1,i-1)*binomial(n+1,i)*binomial(n+m-i+1,m+1-i),i,0,m+1); /* Vladimir Kruchinin, Jan 15 2018 */

Formula

Row n generating function: 1/(n+1) * 1/(1-x) * Jacobi_P(n,1,1,(1+x)/(1-x)) = N_n(x)/(1-x)^n where N_n(x) denotes the shifted Narayana polynomial N_n(x) = sum{k = 1..n} A001263(k)*x^(k-1) of degree n-1.
Conjectural column n generating function: N_n(x^2)/(1-x)^(2n+1).
The entries in row n are given by the values of a polynomial function p_n(x) at x = 0,1,2,... . The first few are p_1(x) = 2x + 1, p_2(x) = (5x^2 + 5x + 2)/2, p_3(x) = (2x + 1)*(7x^2 + 7x + 6)/6 and p_4(x) = (7x^4 + 14x^3 + 21x^2 + 14x + 4)/4. These polynomials appear to have their zeros on the line Re x = -1/2; that is, the polynomials p_n(-x) appear to satisfy a Riemann hypothesis. The corresponding result for A108625 is true (see A142995 for details).
Contribution from Paul Barry, Jan 06 2009: (Start)
The g.f. for the corresponding number triangle is:
1/(1-x-xy-x^2y/(1-x-x^2y/(1-x-xy-x^2y/(1-x-x^2y/(1-x-xy-x^2y.... (a continued fraction). (End)
This g.f. satisfies x^2*y*g^2 - (1-x-x*y)*g + 1 = 0. - R. J. Mathar, Jun 16 2016
G.f.: ((y-1)*sqrt(((x^2+2*x+1)*y-x^2+2*x-1)/(y-1))+(-x-1)*y-x+1)/(2*x^2*y). - Vladimir Kruchinin, Jan 15 2018
T(n,m) = 1/(n+1)*Sum_{i=0..m+1} C(n+1,i-1)*C(n+1,i)*C(n+m-i+1,m+1-i). - Vladimir Kruchinin, Jan 15 2018

A133285 Indices of the centered 12-gonal numbers which are also 12-gonal number, or numbers X such that 120*X^2-120*X+36 is a square.

Original entry on oeis.org

1, 12, 253, 5544, 121705, 2671956, 58661317, 1287877008, 28274632849, 620754045660, 13628314371661, 299202162130872, 6568819252507513, 144214821393034404, 3166157251394249365, 69511244709280451616
Offset: 1

Views

Author

Richard Choulet, Oct 16 2007

Keywords

Comments

Partial sums of A077422. - R. J. Mathar, Nov 27 2011
Indices of centered pentagonal numbers (A005891) which are also centered hexagonal numbers (A003215). - Colin Barker, Feb 07 2015

Crossrefs

Programs

Formula

a(n+2) = 22*a(n+1)-a(n)-10 ; a(n+1)=11*a(n)-5+(120*a(n)^2-120*a(n)+36)^0.5
G.f. x*(-1+11*x) / ( (x-1)*(x^2-22*x+1) ). - R. J. Mathar, Nov 27 2011

Extensions

More terms from Paolo P. Lava, Aug 06 2008

A285810 Primes equal to a centered pentagonal number plus 1.

Original entry on oeis.org

2, 7, 17, 107, 227, 277, 457, 857, 1627, 3517, 4517, 5407, 9767, 11057, 13877, 15017, 16607, 20477, 23767, 26267, 27827, 35107, 37517, 41927, 42577, 50767, 53657, 58907, 62017, 68477, 79657, 83267, 86027, 93607, 98507, 110777, 113957, 128257, 137477, 145807
Offset: 1

Views

Author

Colin Barker, Apr 27 2017

Keywords

Crossrefs

Programs

  • PARI
    cpg(m, n) = m*n*(n-1)/2+1 \\ n-th centered m-gonal number
    maxk=600; L=List(); for(k=1, maxk, if(isprime(p=cpg(5, k) + 1), listput(L, p))); Vec(L)

A133272 Indices of centered heptagonal numbers (A069099) which are also heptagonal numbers (A000566).

Original entry on oeis.org

1, 7, 78, 924, 11005, 131131, 1562562, 18619608, 221872729, 2643853135, 31504364886, 375408525492, 4473397941013, 53305366766659, 635191003258890, 7568986672340016, 90192649064821297, 1074742802105515543
Offset: 1

Views

Author

Richard Choulet, Oct 16 2007

Keywords

Comments

Numbers X such that 140*X^2-140*X+49 is a square.
Also positive integers x in the solutions to 5*x^2 - 7*y^2 - 5*x + 7*y = 0, the corresponding values of y being A253621. - Colin Barker, Jan 06 2015
Also indices of centered pentagonal numbers (A005891) which are also centered heptagonal numbers (A069099). - Colin Barker, Jan 06 2015

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13,-13,1},{1,7,78},25] (* Paolo Xausa, Jan 07 2024 *)
  • PARI
    Vec(x*(6*x-1)/((x-1)*(x^2-12*x+1)) + O(x^100)) \\ Colin Barker, Jan 06 2015

Formula

a(n+2) = 12*a(n+1) - a(n) - 5.
a(n+1) = 6*a(n) - 5/2 + (1/2)*sqrt(140*a(n)^2 - 140*a(n) + 49).
G.f.: x*(-1+6*x)/((-1+x)*(1-12*x+x^2)). - R. J. Mathar, Nov 14 2007
a(n) = 13*a(n-1) - 13*a(n-2) + a(n-3). - Colin Barker, Jan 06 2015

Extensions

More terms from Paolo P. Lava, Jul 14 2008

A133273 Indices of centered decagonal numbers which are also decagonal numbers.

Original entry on oeis.org

1, 10, 171, 3060, 54901, 985150, 17677791, 317215080, 5692193641, 102142270450, 1832868674451, 32889493869660, 590178020979421, 10590314883759910, 190035489886698951, 3410048503076821200, 61190837565496082641, 1098025027675852666330, 19703259660599851911291
Offset: 1

Views

Author

Richard Choulet, Oct 16 2007

Keywords

Comments

Numbers k such that 80*k^2 - 80*k + 25 is a square.
Also the indices of centered square numbers which are also centered pentagonal numbers. - Colin Barker, Jan 01 2015

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{19,-19,1},{1,10,171},20] (* Harvey P. Dale, Oct 09 2020 *)
  • PARI
    Vec(x*(-1+9*x)/((-1+x)*(1-18*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 01 2015

Formula

a(n+2) = 18*a(n+1) - a(n) - 8.
a(n+1) = 9*a(n) - 4 + sqrt(80*a(n)^2 - 80*a(n) + 25).
G.f.: x*(-1+9*x)/(-1+x)/(1 - 18*x + x^2). - R. J. Mathar, Nov 14 2007
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3). - Colin Barker, Jan 01 2015
Product_{n>=2} (1 - 1/a(n)) = 2/sqrt(5) (= A010532 / 10). - Amiram Eldar, Dec 02 2024

Extensions

More terms from Paolo P. Lava, Nov 25 2008
Previous Showing 51-60 of 90 results. Next