cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 75 results. Next

A195322 a(n) = 20*n^2.

Original entry on oeis.org

0, 20, 80, 180, 320, 500, 720, 980, 1280, 1620, 2000, 2420, 2880, 3380, 3920, 4500, 5120, 5780, 6480, 7220, 8000, 8820, 9680, 10580, 11520, 12500, 13520, 14580, 15680, 16820, 18000, 19220, 20480, 21780, 23120, 24500, 25920, 27380, 28880, 30420, 32000, 33620, 35280
Offset: 0

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 20, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Semiaxis opposite to A195317 in the same spiral.
a(n) is the sum of all the integers less than 10*n which are not multiple of 2 or 5. a(2) = (1 + 3 + 7 + 9) + (11 + 13 + 17 + 19) = 20 + 60 = 80 = 20 * 2^2. (Link Crux Mathematicorum). - Bernard Schott, May 15 2017
Number of terms less than 10^k (k=0, 1, 2, ...): 1, 1, 3, 8, 23, 71, 224, 708, 2237, 7072, 22361, 70711, ... - Muniru A Asiru, Feb 01 2018

Examples

			From _Muniru A Asiru_, Feb 01 2018: (Start)
n=0, a(0) = 20*0^2 = 0.
n=1, a(1) = 20*1^2 = 20.
n=1, a(2) = 20*2^2 = 80.
n=1, a(3) = 20*3^2 = 180.
n=1, a(4) = 20*4^2 = 320.
...
(End)
		

Crossrefs

Programs

Formula

a(n) = 20*A000290(n) = 10*A001105(n) = 5*A016742(n) = 4*A033429(n) = 2*A033583(n).
a(0)=0, a(1)=20, a(2)=80; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jan 18 2013
a(n) = A010014(n) - A005899(n) for n > 0. - R. J. Cano, Sep 29 2015
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 20*x*(1 + x)/(1-x)^3.
E.g.f.: 20*x*(1 + x)*exp(x).
a(n) = n*A008602(n) = A195148(2*n). (End)

A008416 Coordination sequence for 8-dimensional cubic lattice.

Original entry on oeis.org

1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688, 658048, 1229360, 2187520, 3732560, 6140800, 9785072, 15158272, 22900496, 33830016, 48978352, 69629696, 97364944, 134110592, 182192752, 244396544, 324031120, 425000576
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for 8-dimensional cyclotomic lattice Z[zeta_16].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1 + x)/(1 - x))^8, {x, 0, 26}], x] (* Michael De Vlieger, Dec 18 2017 *)

Formula

G.f.: ((1+x)/(1-x))^8.
a(n) = A008415(n) + A008415(n-1) + a(n-1). - Bruce J. Nicholson, Dec 17 2017
n*a(n) = 16*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018

A180669 a(n) = a(n-1)+a(n-2)+a(n-3)+4*n^2-16*n+18 with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 7, 26, 72, 171, 371, 760, 1500, 2889, 5475, 10266, 19116, 35435, 65495, 120832, 222664, 410017, 754671, 1388650, 2554784, 4699707, 8644907, 15901336, 29248068, 53796617, 98948523, 181995914, 334743972, 615691547
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+2) represent the Kn14 and Kn24 sums of the square array of Delannoy numbers A008288. See A180662 for the definition of these knight and other chess sums.

Crossrefs

Cf. A000073 (Kn11 & Kn21), A089068 (Kn12 & Kn22), A180668 (Kn13 & Kn23), A180669 (Kn14 & Kn24), A180670 (Kn15 & Kn25).

Programs

  • Maple
    nmax:=30: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):= a(n-1)+a(n-2)+a(n-3)+4*(n-2)^2+2 od: seq(a(n),n=0..nmax);
  • Mathematica
    nxt[{n_,a_,b_,c_}]:={n+1,b,c,a+b+c+4n(n-2)+6}; NestList[nxt,{2,0,0,1},30][[;;,2]] (* or *) LinearRecurrence[{4,-5,2,-1,2,-1},{0,0,1,7,26,72},40] (* Harvey P. Dale, Jul 13 2024 *)

Formula

a(n) = a(n-1)+a(n-2)+a(n-3)+4*(n-2)^2+2 with a(0)=0, a(1)=0 and a(2)=1.
a(n) = a(n-1)+A001590(n+5)-2-4*n with a(0)=0.
a(n) = Sum_{m=0..n} A005899(m)*A000073(n-m).
a(n+2) = Sum_{k=0..floor(n/2)} A008288(n-k+3,k+3).
GF(x) = (x^2*(1+x)^3)/((1-x)^3*(1-x-x^2-x^3)).
From Bruno Berselli, Sep 23 2010: (Start)
a(n) = 3*a(n-1)-2a(n-2)-a(n-4)+a(n-5)+8 for n>4.
a(n)-4*a(n-1)+5a(n-2)-2*a(n-3)+a(n-4)-2*a(n-5)+a(n-6) = 0 for n>5. (End)

A058395 Square array read by antidiagonals. Based on triangular numbers (A000217) with each term being the sum of 2 consecutive terms in the previous row.

Original entry on oeis.org

1, 0, 1, 3, 1, 1, 0, 3, 2, 1, 6, 3, 4, 3, 1, 0, 6, 6, 6, 4, 1, 10, 6, 9, 10, 9, 5, 1, 0, 10, 12, 15, 16, 13, 6, 1, 15, 10, 16, 21, 25, 25, 18, 7, 1, 0, 15, 20, 28, 36, 41, 38, 24, 8, 1, 21, 15, 25, 36, 49, 61, 66, 56, 31, 9, 1, 0, 21, 30, 45, 64, 85, 102, 104, 80, 39, 10, 1, 28, 21, 36, 55, 81, 113, 146, 168, 160, 111, 48, 11, 1
Offset: 0

Views

Author

Henry Bottomley, Nov 24 2000

Keywords

Comments

Changing the formula by replacing T(2n, 0) = T(n, 3) with T(2n, 0) = T(n, m) for some other value of m would change the generating function to the coefficient of x^n in expansion of (1 + x)^k / (1 - x^2)^m. This would produce A058393, A058394, A057884 (and effectively A007318).

Examples

			The array T(n, k) starts:
[0] 1, 0,  3,   0,   6,   0,  10,    0,   15,    0, ...
[1] 1, 1,  3,   3,   6,   6,  10,   10,   15,   15, ...
[2] 1, 2,  4,   6,   9,  12,  16,   20,   25,   30, ...
[3] 1, 3,  6,  10,  15,  21,  28,   36,   45,   55, ...
[4] 1, 4,  9,  16,  25,  36,  49,   64,   81,  100, ...
[5] 1, 5, 13,  25,  41,  61,  85,  113,  145,  181, ...
[6] 1, 6, 18,  38,  66, 102, 146,  198,  258,  326, ...
[7] 1, 7, 24,  56, 104, 168, 248,  344,  456,  584, ...
[8] 1, 8, 31,  80, 160, 272, 416,  592,  800, 1040, ...
[9] 1, 9, 39, 111, 240, 432, 688, 1008, 1392, 1840, ...
		

Crossrefs

Rows are A000217 with zeros, A008805, A002620, A000217, A000290, A001844, A005899.
Columns are A000012, A001477, A016028.
The triangle A055252 also appears in half of the array.

Programs

  • Maple
    gf := n -> (1 + x)^n / (1 - x^2)^3: ser := n -> series(gf(n), x, 20):
    seq(lprint([n], seq(coeff(ser(n), x, k), k = 0..9)), n = 0..9); # Peter Luschny, Apr 12 2023
  • Mathematica
    T[0, k_] := If[OddQ[k], 0, (k+2)(k+4)/8];
    T[n_, k_] := T[n, k] = If[k == 0, 1, T[n-1, k-1] + T[n-1, k]];
    Table[T[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 13 2023 *)

Formula

T(n, k) = T(n-1, k-1) + T(n, k-1) with T(0, k) = 1, T(2*n, 0) = T(n, 3) and T(2*n + 1, 0) = 0. Coefficient of x^n in expansion of (1 + x)^k / (1 - x^2)^3.

A248800 a(n) = (2*n^2 + 3 + (-1)^n)/2.

Original entry on oeis.org

2, 2, 6, 10, 18, 26, 38, 50, 66, 82, 102, 122, 146, 170, 198, 226, 258, 290, 326, 362, 402, 442, 486, 530, 578, 626, 678, 730, 786, 842, 902, 962, 1026, 1090, 1158, 1226, 1298, 1370, 1446, 1522, 1602, 1682, 1766, 1850, 1938, 2026, 2118
Offset: 0

Views

Author

Paul Curtz, Oct 14 2014

Keywords

Comments

Numbers belonging to A016825: a(n) = A016825( A002620(n) ). - Bruno Berselli, Oct 15 2014
For n>1, a(n) is the number of row vectors of length 2n with entries in [1,n], first entry 1, with maximum inner distance. That is, vectors where the modular distance between adjacent entries is at least (n-2)/2. Modular distance is the minimum of remainders of (x - y) and (y - x) when dividing by n. Geometrically, this metric counts how far the integers mod n are from each other if 1 and n are adjacent as on a circle. - Omar Aceval Garcia, Jan 30 2021

Crossrefs

Programs

  • Magma
    [n^2+3/2+(-1)^n/2: n in [0..50]]; // Vincenzo Librandi, Oct 15 2014
    
  • Mathematica
    Table[n^2 + 3/2 + (-1)^n/2, {n, 0, 50}] (* Bruno Berselli, Oct 15 2014 *)
    CoefficientList[Series[2(x^3+x^2-x+1)/((1-x)^3 (x+1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2014 *)
    LinearRecurrence[{2,0,-2,1},{2,2,6,10},60] (* Harvey P. Dale, Apr 08 2019 *)
  • PARI
    Vec(-2*(x^3+x^2-x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Oct 15 2014
    
  • Sage
    [(2*n^2 +3 +(-1)^n)/2 for n in (0..50)] # G. C. Greubel, Dec 14 2021

Formula

a(n) = A000290(n) + A000034(n+1) = 4*A002620(n) + 2.
a(n+1) = 2*A080827(n+1) = (n+2)^2 - A042964(n+1) = a(n) + 2*n + 1 -(-1)^n.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Colin Barker, Oct 15 2014
G.f.: 2*(1-x+x^2+x^3) / ((1-x)^3*(x+1)). - Colin Barker, Oct 15 2014
E.g.f.: cosh(x) + (1 + x + x^2)*exp(x). - G. C. Greubel, Dec 14 2021
a(2n) = A005899(n) for n > 0, a(2n+1) = A069894(n). - Omar Aceval Garcia, Dec 30 2021

Extensions

Typo in data fixed by Colin Barker, Oct 15 2014

A343599 T(n,k) is the coordination number of the (n+1)-dimensional cubic lattice for radius k; triangle read by rows, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 4, 1, 6, 18, 1, 8, 32, 88, 1, 10, 50, 170, 450, 1, 12, 72, 292, 912, 2364, 1, 14, 98, 462, 1666, 4942, 12642, 1, 16, 128, 688, 2816, 9424, 27008, 68464, 1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 1, 20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, 1, 22, 242, 1782, 9922, 44726, 170610, 568150, 1690370, 4573910, 11414898
Offset: 0

Views

Author

R. J. Mathar, Apr 21 2021

Keywords

Examples

			The full array starts
     1      2      2      2      2      2      2      2      2
     1      4      8     12     16     20     24     28     32
     1      6     18     38     66    102    146    198    258
     1      8     32     88    192    360    608    952   1408
     1     10     50    170    450   1002   1970   3530   5890
     1     12     72    292    912   2364   5336  10836  20256
     1     14     98    462   1666   4942  12642  28814  59906
     1     16    128    688   2816   9424  27008  68464 157184
     1     18    162    978   4482  16722  53154 148626 374274
		

Crossrefs

Cf. A035607 (by antidiags), A008574 (n=1), A005899 (n=2), A008412 (n=3), A008413 (n=4), A008414 (n=5), A001105 (k=2), A035597 (k=3), A035598 (k=4).
Main diagonal gives A050146(n+1).

Programs

  • Maple
    A343599 := proc(n,k)
        local g,x,y ;
        g := (1+y)/(1-x-y-x*y) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,k) ;
    end proc:
  • Mathematica
    T[n_, k_] := Module[{x, y}, SeriesCoefficient[(1 + y)/(1 - x - y - x*y), {x, 0, n}] // SeriesCoefficient[#, {y, 0, k}]&];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 16 2023 *)

Formula

G.f.: (1+y)/(1-x-y-x*y).
T(n,k) = A008288(n,k) + A008288(n,k-1).

A086955 a(n) = n^2 + 2*n + 2 - (-1)^n.

Original entry on oeis.org

1, 6, 9, 18, 25, 38, 49, 66, 81, 102, 121, 146, 169, 198, 225, 258, 289, 326, 361, 402, 441, 486, 529, 578, 625, 678, 729, 786, 841, 902, 961, 1026, 1089, 1158, 1225, 1298, 1369, 1446, 1521, 1602, 1681, 1766, 1849, 1938, 2025, 2118, 2209, 2306, 2401, 2502
Offset: 0

Views

Author

Paul Barry, Jul 25 2003

Keywords

Crossrefs

Cf. A080335.

Programs

Formula

G.f.: (1 + 4*x - 3*x^2 + 2*x^3)/((1+x)*(1-x)^3).
a(2*n) = (2*n+1)^2 = A016754(n), a(2*n+1) = 4*n^2 + 8*n + 6 = A005899(n+1).

A106230 Least k > 0 for n > 0 such that (n^2 + 1)*(k^2) + (n^2 + 1)*k + 1 = j^2 where j sequence = A106229.

Original entry on oeis.org

3, 8, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, 2499
Offset: 1

Views

Author

Pierre CAMI, Apr 26 2005

Keywords

Comments

For (n^2 + 1)*(k^2) + (n^2 +1)*k + 1 = j^2 there is a sequence k(i,n) with a recurrence.
For n=1, k(1,1) = 0, k(2,1) = 3, k(i,1) = 6*k(i-1,1) + 2 - k(i-2,1).
For n=2, k(1,2) = 1, k(2,2) = 19, k(i,2) = 18*k(i-1,2) + 8 - k(i-2,2).
For n>2, k(1,n) = 0, k(2,n) = n^2 - 2*n, k(3,n) = n^2 + 2*n, k(4,n) = (4*n^2 + 2)*k(2,n) + 2*n^2 then k(i,n) = (4*n^2 + 2)*k(i-2,n) + 2*n^2 - k(i-4,n). As i increases the ratio j(i,n)/k(i,n) tends to sqrt(n^2 + 1).

Crossrefs

Programs

Formula

For n > 2, a(n) = n^2 - 2*n.
a(n) = A005563(n-2), n>2. - R. J. Mathar, Aug 28 2008
G.f.: (3 - x - 12*x^2 + 20*x^3 - 8*x^4)/(1 - x)^3. - G. C. Greubel, May 11 2017

A115284 Correlation triangle of 4-C(1,n)-2*C(0,n) (A113311).

Original entry on oeis.org

1, 3, 3, 4, 10, 4, 4, 15, 15, 4, 4, 16, 26, 16, 4, 4, 16, 31, 31, 16, 4, 4, 16, 32, 42, 32, 16, 4, 4, 16, 32, 47, 47, 32, 16, 4, 4, 16, 32, 48, 58, 48, 32, 16, 4, 4, 16, 32, 48, 63, 63, 48, 32, 16, 4, 4, 16, 32, 48, 64, 74, 64, 48, 32, 16, 4
Offset: 0

Views

Author

Paul Barry, Jan 19 2006

Keywords

Comments

Row sums are the coordination sequence for cubic lattice A005899. Diagonal sums are A115285. T(2n,n) is A113770. T(2n,n)-T(2n,n+1) is 1,6,10,10,10,.... (10-4C(1,n)-5C(0,n)).

Examples

			Triangle begins:
  1;
  3, 3;
  4, 10, 4;
  4, 15, 15, 4;
  4, 16, 26, 16, 4;
  4, 16, 31, 31, 16, 4;
  4, 16, 32, 42, 32, 16, 4;
		

Formula

G.f.: (1+x)^2*(1+x*y)^2/((1-x)*(1-x*y)*(1-x^2*y)).
T(n, k) = Sum_{j=0..n} [j<=k]*(4-C(1, k-j)-2*C(0, k-j))*[j<=n-k]*(4-C(1, n-k-j)-2*C(0, n-k-j)).

A106229 Least j > 1 for n > 0 such that j^2 = (n^2 + 1)*(k^2) + (n^2 + 1)*k + 1 where k sequence = A106230.

Original entry on oeis.org

5, 19, 11, 35, 79, 149, 251, 391, 575, 809, 1099, 1451, 1871, 2365, 2939, 3599, 4351, 5201, 6155, 7219, 8399, 9701, 11131, 12695, 14399, 16249, 18251, 20411, 22735, 25229, 27899, 30751, 33791, 37025, 40459, 44099, 47951, 52021, 56315, 60839, 65599, 70601, 75851
Offset: 1

Views

Author

Pierre CAMI, Apr 26 2005

Keywords

Comments

For j^2 = (n^2 + 1)*(k^2) + (n^2 + 1)*k + 1, there is a sequence j(i,n) with a recurrence.
For n=1, j(1,1) = 1, j(2,1) = 5, j(i,1) = 6*j(i-1,1) - j(i-2,1).
For n=2, j(1,2) = 1, j(2,2) = 19, j(i,2) = 18*j(i-1,2) - j(i-2,2).
For n>2, j(1,n) = 1, j(2,n) = n^3 - 2*n^2 + n - 1, j(3,n) = n^3 + 2*n^2 + n + 1, j(4,n) = (4*n^2 + 2)*j(2,n) + 1 then j(i,n) = (4*n^2+2)*j(i-2,n) - j(i-4,n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{5,19,11,35,79,149},43] (* Georg Fischer, Oct 25 2020 *)
  • PARI
    a(n) = if(n<3, 14*n-9, n^3-2*n^2+n-1); \\ Jinyuan Wang, Apr 07 2020

Formula

For n > 2, a(n) = n^3 - 2*n^2 + n - 1.

Extensions

More terms from Jinyuan Wang, Apr 07 2020
Previous Showing 61-70 of 75 results. Next