A195322
a(n) = 20*n^2.
Original entry on oeis.org
0, 20, 80, 180, 320, 500, 720, 980, 1280, 1620, 2000, 2420, 2880, 3380, 3920, 4500, 5120, 5780, 6480, 7220, 8000, 8820, 9680, 10580, 11520, 12500, 13520, 14580, 15680, 16820, 18000, 19220, 20480, 21780, 23120, 24500, 25920, 27380, 28880, 30420, 32000, 33620, 35280
Offset: 0
From _Muniru A Asiru_, Feb 01 2018: (Start)
n=0, a(0) = 20*0^2 = 0.
n=1, a(1) = 20*1^2 = 20.
n=1, a(2) = 20*2^2 = 80.
n=1, a(3) = 20*3^2 = 180.
n=1, a(4) = 20*4^2 = 320.
...
(End)
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Léo Sauvé, Problem 53, Crux Mathematicorum, Vol. 1, Nov. 1975, page 88.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([0..10^3],n->20*n^2); # Muniru A Asiru, Feb 01 2018
-
[20*n^2: n in [0..40]]; // Vincenzo Librandi, Sep 20 2011
-
a := n -> 20*n^2; seq(a(n), n=0..10^3); # Muniru A Asiru, Feb 01 2018
-
20 Range[0, 40]^2 (* or *) LinearRecurrence[{3, -3, 1}, {0, 20, 80}, 50] (* Harvey P. Dale, Jan 18 2013 *)
-
a(n) = 20*n^2 \\ Charles R Greathouse IV, Oct 07 2015
A008416
Coordination sequence for 8-dimensional cubic lattice.
Original entry on oeis.org
1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688, 658048, 1229360, 2187520, 3732560, 6140800, 9785072, 15158272, 22900496, 33830016, 48978352, 69629696, 97364944, 134110592, 182192752, 244396544, 324031120, 425000576
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- M. Beck and S. Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Ross McPhedran, Numerical Investigations of the Keiper-Li Criterion for the Riemann Hypothesis, arXiv:2311.06294 [math.NT], 2023. See p. 6.
- Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).
-
CoefficientList[Series[((1 + x)/(1 - x))^8, {x, 0, 26}], x] (* Michael De Vlieger, Dec 18 2017 *)
A180669
a(n) = a(n-1)+a(n-2)+a(n-3)+4*n^2-16*n+18 with a(0)=0, a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 0, 1, 7, 26, 72, 171, 371, 760, 1500, 2889, 5475, 10266, 19116, 35435, 65495, 120832, 222664, 410017, 754671, 1388650, 2554784, 4699707, 8644907, 15901336, 29248068, 53796617, 98948523, 181995914, 334743972, 615691547
Offset: 0
-
nmax:=30: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):= a(n-1)+a(n-2)+a(n-3)+4*(n-2)^2+2 od: seq(a(n),n=0..nmax);
-
nxt[{n_,a_,b_,c_}]:={n+1,b,c,a+b+c+4n(n-2)+6}; NestList[nxt,{2,0,0,1},30][[;;,2]] (* or *) LinearRecurrence[{4,-5,2,-1,2,-1},{0,0,1,7,26,72},40] (* Harvey P. Dale, Jul 13 2024 *)
A058395
Square array read by antidiagonals. Based on triangular numbers (A000217) with each term being the sum of 2 consecutive terms in the previous row.
Original entry on oeis.org
1, 0, 1, 3, 1, 1, 0, 3, 2, 1, 6, 3, 4, 3, 1, 0, 6, 6, 6, 4, 1, 10, 6, 9, 10, 9, 5, 1, 0, 10, 12, 15, 16, 13, 6, 1, 15, 10, 16, 21, 25, 25, 18, 7, 1, 0, 15, 20, 28, 36, 41, 38, 24, 8, 1, 21, 15, 25, 36, 49, 61, 66, 56, 31, 9, 1, 0, 21, 30, 45, 64, 85, 102, 104, 80, 39, 10, 1, 28, 21, 36, 55, 81, 113, 146, 168, 160, 111, 48, 11, 1
Offset: 0
The array T(n, k) starts:
[0] 1, 0, 3, 0, 6, 0, 10, 0, 15, 0, ...
[1] 1, 1, 3, 3, 6, 6, 10, 10, 15, 15, ...
[2] 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ...
[3] 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
[4] 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...
[5] 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, ...
[6] 1, 6, 18, 38, 66, 102, 146, 198, 258, 326, ...
[7] 1, 7, 24, 56, 104, 168, 248, 344, 456, 584, ...
[8] 1, 8, 31, 80, 160, 272, 416, 592, 800, 1040, ...
[9] 1, 9, 39, 111, 240, 432, 688, 1008, 1392, 1840, ...
The triangle
A055252 also appears in half of the array.
-
gf := n -> (1 + x)^n / (1 - x^2)^3: ser := n -> series(gf(n), x, 20):
seq(lprint([n], seq(coeff(ser(n), x, k), k = 0..9)), n = 0..9); # Peter Luschny, Apr 12 2023
-
T[0, k_] := If[OddQ[k], 0, (k+2)(k+4)/8];
T[n_, k_] := T[n, k] = If[k == 0, 1, T[n-1, k-1] + T[n-1, k]];
Table[T[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 13 2023 *)
A248800
a(n) = (2*n^2 + 3 + (-1)^n)/2.
Original entry on oeis.org
2, 2, 6, 10, 18, 26, 38, 50, 66, 82, 102, 122, 146, 170, 198, 226, 258, 290, 326, 362, 402, 442, 486, 530, 578, 626, 678, 730, 786, 842, 902, 962, 1026, 1090, 1158, 1226, 1298, 1370, 1446, 1522, 1602, 1682, 1766, 1850, 1938, 2026, 2118
Offset: 0
-
[n^2+3/2+(-1)^n/2: n in [0..50]]; // Vincenzo Librandi, Oct 15 2014
-
Table[n^2 + 3/2 + (-1)^n/2, {n, 0, 50}] (* Bruno Berselli, Oct 15 2014 *)
CoefficientList[Series[2(x^3+x^2-x+1)/((1-x)^3 (x+1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2014 *)
LinearRecurrence[{2,0,-2,1},{2,2,6,10},60] (* Harvey P. Dale, Apr 08 2019 *)
-
Vec(-2*(x^3+x^2-x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Oct 15 2014
-
[(2*n^2 +3 +(-1)^n)/2 for n in (0..50)] # G. C. Greubel, Dec 14 2021
A343599
T(n,k) is the coordination number of the (n+1)-dimensional cubic lattice for radius k; triangle read by rows, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 4, 1, 6, 18, 1, 8, 32, 88, 1, 10, 50, 170, 450, 1, 12, 72, 292, 912, 2364, 1, 14, 98, 462, 1666, 4942, 12642, 1, 16, 128, 688, 2816, 9424, 27008, 68464, 1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 1, 20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, 1, 22, 242, 1782, 9922, 44726, 170610, 568150, 1690370, 4573910, 11414898
Offset: 0
The full array starts
1 2 2 2 2 2 2 2 2
1 4 8 12 16 20 24 28 32
1 6 18 38 66 102 146 198 258
1 8 32 88 192 360 608 952 1408
1 10 50 170 450 1002 1970 3530 5890
1 12 72 292 912 2364 5336 10836 20256
1 14 98 462 1666 4942 12642 28814 59906
1 16 128 688 2816 9424 27008 68464 157184
1 18 162 978 4482 16722 53154 148626 374274
-
A343599 := proc(n,k)
local g,x,y ;
g := (1+y)/(1-x-y-x*y) ;
coeftayl(%,x=0,n) ;
coeftayl(%,y=0,k) ;
end proc:
-
T[n_, k_] := Module[{x, y}, SeriesCoefficient[(1 + y)/(1 - x - y - x*y), {x, 0, n}] // SeriesCoefficient[#, {y, 0, k}]&];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 16 2023 *)
A086955
a(n) = n^2 + 2*n + 2 - (-1)^n.
Original entry on oeis.org
1, 6, 9, 18, 25, 38, 49, 66, 81, 102, 121, 146, 169, 198, 225, 258, 289, 326, 361, 402, 441, 486, 529, 578, 625, 678, 729, 786, 841, 902, 961, 1026, 1089, 1158, 1225, 1298, 1369, 1446, 1521, 1602, 1681, 1766, 1849, 1938, 2025, 2118, 2209, 2306, 2401, 2502
Offset: 0
A106230
Least k > 0 for n > 0 such that (n^2 + 1)*(k^2) + (n^2 + 1)*k + 1 = j^2 where j sequence = A106229.
Original entry on oeis.org
3, 8, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, 2499
Offset: 1
-
CoefficientList[Series[(-3 + z + 12*z^2 - 20*z^3 + 8*z^4)/(-1 + z)^3, {z, 0, 60}], z] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *)
LinearRecurrence[{3,-3,1},{3,8,3,8,15},60] (* Harvey P. Dale, Jul 05 2022 *)
-
x='x+O('x^50); Vec((3-x-12*x^2+20*x^3-8*x^4)/(1-x)^3) \\ G. C. Greubel, May 11 2017
-
a(n)=n*if(n>2, n-2, n+2) \\ Charles R Greathouse IV, Oct 19 2022
A115284
Correlation triangle of 4-C(1,n)-2*C(0,n) (A113311).
Original entry on oeis.org
1, 3, 3, 4, 10, 4, 4, 15, 15, 4, 4, 16, 26, 16, 4, 4, 16, 31, 31, 16, 4, 4, 16, 32, 42, 32, 16, 4, 4, 16, 32, 47, 47, 32, 16, 4, 4, 16, 32, 48, 58, 48, 32, 16, 4, 4, 16, 32, 48, 63, 63, 48, 32, 16, 4, 4, 16, 32, 48, 64, 74, 64, 48, 32, 16, 4
Offset: 0
Triangle begins:
1;
3, 3;
4, 10, 4;
4, 15, 15, 4;
4, 16, 26, 16, 4;
4, 16, 31, 31, 16, 4;
4, 16, 32, 42, 32, 16, 4;
A106229
Least j > 1 for n > 0 such that j^2 = (n^2 + 1)*(k^2) + (n^2 + 1)*k + 1 where k sequence = A106230.
Original entry on oeis.org
5, 19, 11, 35, 79, 149, 251, 391, 575, 809, 1099, 1451, 1871, 2365, 2939, 3599, 4351, 5201, 6155, 7219, 8399, 9701, 11131, 12695, 14399, 16249, 18251, 20411, 22735, 25229, 27899, 30751, 33791, 37025, 40459, 44099, 47951, 52021, 56315, 60839, 65599, 70601, 75851
Offset: 1
-
LinearRecurrence[{4,-6,4,-1},{5,19,11,35,79,149},43] (* Georg Fischer, Oct 25 2020 *)
-
a(n) = if(n<3, 14*n-9, n^3-2*n^2+n-1); \\ Jinyuan Wang, Apr 07 2020
Comments