cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 117 results. Next

A099196 a(n) = n*(2*n^8 + 84*n^6 + 798*n^4 + 1636*n^2 + 315)/2835.

Original entry on oeis.org

0, 1, 18, 163, 996, 4645, 17718, 57799, 166344, 432073, 1030490, 2286955, 4772780, 9446125, 17852030, 32398735, 56730512, 96220561, 158611106, 254831667, 400030580, 614859189, 927052742, 1373356887, 2001853784, 2874747225, 4071671786, 5693596923, 7867403068, 10751213181
Offset: 0

Views

Author

Jonathan Vos Post, Nov 16 2004

Keywords

Crossrefs

Similar sequences: A005900 (m=3), A014820(n-1) (m=4), A069038 (m=5), A069039 (m=6), A099193 (m=7), A099195 (m=8), A099197 (m=10).
Cf. A000332.

Programs

  • PARI
    concat(0, Vec(x*(1+x)^8/(1-x)^10 + O(x^40))) \\ Michel Marcus, Dec 14 2015

Formula

a(n) = n*(2*n^8 + 84*n^6 + 798*n^4 + 1636*n^2 + 315)/2835.
G.f.: x*(1+x)^8/(1-x)^10. [Colin Barker, May 01 2012]
a(n) = 18*a(n-1)/(n-1) + a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018

Extensions

More terms from Michel Marcus, Dec 14 2015

A099195 a(n) = (n^2)*( n^6 + 28*n^4 + 154*n^2 + 132 )/315.

Original entry on oeis.org

0, 1, 16, 129, 704, 2945, 10128, 29953, 78592, 187137, 411280, 845185, 1640640, 3032705, 5373200, 9173505, 15158272, 24331777, 38058768, 58161793, 87037120, 127791489, 184402064, 261902081, 366594816, 506298625, 690625936, 931299201, 1242506944, 1641303169, 2148053520
Offset: 0

Views

Author

Jonathan Vos Post, Nov 16 2004

Keywords

References

  • H. S. M. Coxeter, Regular Polytopes, New York: Dover, 1973.

Crossrefs

Similar sequences: A005900 (m=3), A014820(n-1) (m=4), A069038 (m=5), A069039 (m=6), A099193 (m=7), A099196 (m=9), A099197 (m=10).
Cf. A000332.

Programs

  • Mathematica
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,1,16,129,704,2945,10128,29953,78592},40] (* Harvey P. Dale, Jan 23 2019 *)
  • PARI
    concat(0, Vec(x*(1+x)^7/(1-x)^9 + O(x^40))) \\ Michel Marcus, Dec 14 2015

Formula

a(n) = (n^2)*( n^6 + 28*n^4 + 154*n^2 + 132 )/315.
G.f.: x*(1+x)^7/(1-x)^9. [R. J. Mathar, Jul 18 2009]
a(n) = 16*a(n-1)/(n-1) + a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018

A104698 Triangle read by rows: T(n,k) = Sum_{j=0..n-k} binomial(k, j)*binomial(n-j+1, k+1).

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 6, 1, 5, 16, 19, 8, 1, 6, 25, 44, 33, 10, 1, 7, 36, 85, 96, 51, 12, 1, 8, 49, 146, 225, 180, 73, 14, 1, 9, 64, 231, 456, 501, 304, 99, 16, 1, 10, 81, 344, 833, 1182, 985, 476, 129, 18, 1, 11, 100, 489, 1408, 2471, 2668, 1765, 704, 163, 20, 1, 12
Offset: 0

Views

Author

Gary W. Adamson, Mar 19 2005

Keywords

Comments

The n-th column of the triangle is the binomial transform of the n-th row of A081277, followed by zeros. Example: column 3, (1, 6, 19, 44, ...) = binomial transform of row 3 of A081277: (1, 5, 8, 4, 0, 0, 0, ...). A104698 = reversal by rows of A142978. - Gary W. Adamson, Jul 17 2008
This sequence is jointly generated with A210222 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1) + 1 and v(n,x) = 2x*u(n-1,x) + v(n-1,x) + 1. See the Mathematica section at A210222. - Clark Kimberling, Mar 19 2012
This Riordan triangle T appears in a formula for A001100(n, 0) = A002464(n), for n >= 1. - Wolfdieter Lang, May 13 2025

Examples

			The Riordan triangle T begins:
  n\k  0   1   2    3    4    5    6   7   8  9 10 ...
  ----------------------------------------------------
  0:   1
  1:   2   1
  2:   3   4   1
  3:   4   9   6    1
  4:   5  16  19    8    1
  5:   6  25  44   33   10    1
  6:   7  36  85   96   51   12    1
  7:   8  49 146  225  180   73   14   1
  8:   9  64 231  456  501  304   99  16   1
  9:  10  81 344  833 1182  985  476 129  18  1
  10: 11 100 489 1408 2471 2668 1765 704 163 20  1
  ... reformatted and extended by _Wolfdieter Lang_, May 13 2025
From _Wolfdieter Lang_, May 13 2025: (Start)
Zumkeller recurrence (adapted for offset [0,0]): 19 = T(4, 2) = T(2, 1) + T(3, 1) + T(3,3) = 4 + 9 + 6 = 19.
A-sequence recurrence: 19 = T(4, 2) = 1*T(3. 1) + 2*T(3. 2) - 2*T(3, 3) = 9 + 12 - 2 = 19.
Z-sequence recurrence: 5 = T(4, 0) = 2*T(3, 0) - 1*T(3, 1) + 2*T(3, 2) - 6*T(3, 3) = 8 - 9 + 12 + 6 = 5.
Boas-Buck recurrence: 19 = T(4, 2) = (1/2)*((2 + 0)*T(2, 2) + (2 + 2*2)*T(3, 2)) = (1/2)*(2 + 36) = 19. (End)
		

Crossrefs

Diagonal sums are A008937(n+1).
Cf. A048739 (row sums), A008288, A005900 (column 3), A014820 (column 4)
Cf. A081277, A142978 by antidiagonals, A119328, A110271 (matrix inverse).

Programs

  • Haskell
    a104698 n k = a104698_tabl !! (n-1) !! (k-1)
    a104698_row n = a104698_tabl !! (n-1)
    a104698_tabl = [1] : [2,1] : f [1] [2,1] where
       f us vs = ws : f vs ws where
         ws = zipWith (+) ([0] ++ us ++ [0]) $
              zipWith (+) ([1] ++ vs) (vs ++ [0])
    -- Reinhard Zumkeller, Jul 17 2015
  • Maple
    A104698 := proc(n, k) add(binomial(k, j)*binomial(n-j+1, n-k-j), j=0..n-k) ; end proc:
    seq(seq(A104698(n, k), k=0..n), n=0..15); # R. J. Mathar, Sep 04 2011
    T := (n, k) -> binomial(n + 1, k + 1)*hypergeom([-k, k - n], [-n - 1], -1):
    for n from 0 to 9 do seq(simplify(T(n, k)), k = 0..n) od;
    T := proc(n, k) option remember; if k = 0 then n + 1 elif k = n then 1 else T(n-2, k-1) + T(n-1, k-1) + T(n-1, k) fi end: # Peter Luschny, May 13 2025
  • Mathematica
    u[1, ] = 1; v[1, ] = 1;
    u[n_, x_] := u[n, x] = x u[n-1, x] + v[n-1, x] + 1;
    v[n_, x_] := v[n, x] = 2 x u[n-1, x] + v[n-1, x] + 1;
    Table[CoefficientList[u[n, x], x], {n, 1, 11}] // Flatten (* Jean-François Alcover, Mar 10 2019, after Clark Kimberling *)
  • PARI
    T(n,k)=sum(j=0,n-k,binomial(k,j)*binomial(n-j+1,k+1)) \\ Charles R Greathouse IV, Jan 16 2012
    

Formula

The triangle is extracted from the product A * B; A = [1; 1, 1; 1, 1, 1; ...], B = [1; 1, 1; 1, 3, 1; 1, 5, 5, 1; ...] both infinite lower triangular matrices (rest of the terms are zeros). The triangle of matrix B by rows = A008288, Delannoy numbers.
From Paul Barry, Jul 18 2005: (Start)
Riordan array (1/(1-x)^2, x(1+x)/(1-x)) = (1/(1-x), x)*(1/(1-x), x(1+x)/(1-x)).
T(n, k) = Sum_{j=0..n} Sum_{i=0..j-k} C(j-k, i)*C(k, i)*2^i.
T(n, k) = Sum_{j=0..k} Sum_{i=0..n-k-j} (n-k-j-i+1)*C(k, j)*C(k+i-1, i). (End)
T(n, k) = binomial(n+1, k+1)*2F1([-k, k-n], [-n-1], -1) where 2F1 is a Gaussian hypergeometric function. - R. J. Mathar, Sep 04 2011
T(n, k) = T(n-2, k-1) + T(n-1, k-1) + T(n-1, k) for 1 < k < n; T(n, 0) = n + 1; T(n, n) = 1. - Reinhard Zumkeller, Jul 17 2015
From Wolfdieter Lang, May 13 2025: (Start)
The Riordan triangle T = (1/(1 - x)^2, x*(1 + x)/(1 - x)) has the o.g.f. G(x, y) = 1/((1 - x)*(1 - x - y*x*(1+x))) for the row polynomials R(n, y) = Sum_{k=0..n} T(n, k)*y^k.
The o.g.f. for column k is G(k, x) = (1/(1 - x)^2)*(x*(1 + x)/(1 - x))^k, for k >= 0.
The o.g.f. for the diagonal m is D(m, x) = N(m, x)/(1 - x)^(m+1), with the numerator polynomial N(m, x) = Sum_{k=0..floor(m/2)} A034867(m, k)*x^(2*k) for m >= 0.
The row sums with o.g.f. R(x) = 1/((1 -x)*(1 - 2*x -x^2) give A048739.
The alternating row sums with o.g.f. 1/((1 - x)(1 + x^2)) give A133872.
The A-sequence for this Riordan triangle has o.g.f. A(x) = 1 + x + sqrt(1 + 6*x + x^2))/2 giving A112478(n). Hence T(n, k) = Sum_{j=0..n-k} A112478(j)*T(n-1, k-1+j), for n >= 1, k >= 1, T(n, k) = 0 for n < k, and T(0, 0) = 1.
The Z-sequence has o.g.f. (5 + x - sqrt(1 + 6*x + x^2))/2 = 3 + x - A(x) giving Z(n) = {2, -1, -A112478(n >= 2)}. Hence T(n, 0) = Sum_{j=0..n-1} Z(j)*T(n-1, j), for n >= 1. For A- and Z-sequences of Riordan triangles see a W. Lang link at A006232 with references.
The Boas-Buck sequences alpha and beta for the Riordan triangle T (see A046521 for the Aug 10 2017 comment and reference) are alpha(n) = A040000(n+1) = repeat{2} and beta(n) = A010673(n+1) = repeat{2,0}. Hence the recurrence for column T(n, k){n>=k}, with input T(k, k) = 1, for k >= 0, is T(n, k) = (1/(n-k)) * Sum{j=k..n-1} (2 + k*(1 + (-1)^(n-1-j))) *T(j,k), for n >= k+1. (End)

A099197 a(n) = (n^2)*(2*n^8+120*n^6+1806*n^4+7180*n^2+5067)/14175.

Original entry on oeis.org

0, 1, 20, 201, 1360, 7001, 29364, 104881, 329024, 927441, 2390004, 5707449, 12767184, 26986089, 54284244, 104535009, 193664256, 346615329, 601446996, 1014889769, 1669752016, 2684641785, 4226553716, 6526963345, 9902174016, 14778775025, 21725194036, 31490462745
Offset: 0

Views

Author

Jonathan Vos Post, Nov 16 2004

Keywords

Crossrefs

Similar sequences: A005900 (m=3), A014820(n-1) (m=4), A069038 (m=5), A069039 (m=6), A099193 (m=7), A099195 (m=8), A099196 (m=9).
Cf. A000332.

Programs

Formula

a(n) = (n^2)*(2*n^8+120*n^6+1806*n^4+7180*n^2+5067)/14175.

A068236 First differences of (n+1)^5-n^5.

Original entry on oeis.org

30, 180, 570, 1320, 2550, 4380, 6930, 10320, 14670, 20100, 26730, 34680, 44070, 55020, 67650, 82080, 98430, 116820, 137370, 160200, 185430, 213180, 243570, 276720, 312750, 351780, 393930, 439320, 488070, 540300, 596130, 655680, 719070, 786420, 857850, 933480
Offset: 0

Views

Author

Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Mar 25 2002

Keywords

Comments

For n>=0, a(n) is equal to the number of functions f:{1,2,3,4,5}->{1,2,...,n+2} such that Im(f) contains 2 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Feb 24 2007

Crossrefs

Cf. A022521 ((n+1)^5-n^5), A000584 (5th powers), A005900 (octahedral numbers).

Programs

  • Mathematica
    Table[20*n^3 + 10*n, {n, 1, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
    Differences[#[[2]]-#[[1]]&/@Partition[Range[0,40]^5,2,1]] (* or *) LinearRecurrence[{4,-6,4,-1},{30,180,570,1320},40] (* Harvey P. Dale, Jun 05 2019 *)
  • PARI
    Vec(30*(x+1)^2 / (x-1)^4 + O(x^100)) \\ Colin Barker, Dec 13 2014

Formula

a(n) = (n+2)^5-2*(n+1)^5+n^5.
a(n) = 30*A005900(n+1). - R. J. Mathar, Sep 02 2008
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Colin Barker, Dec 13 2014
G.f.: 30*(x+1)^2 / (x-1)^4. - Colin Barker, Dec 13 2014

A061317 Split positive integers into extending even groups and sum: 1+2, 3+4+5+6, 7+8+9+10+11+12, 13+14+15+16+17+18+19+20, ...

Original entry on oeis.org

0, 3, 18, 57, 132, 255, 438, 693, 1032, 1467, 2010, 2673, 3468, 4407, 5502, 6765, 8208, 9843, 11682, 13737, 16020, 18543, 21318, 24357, 27672, 31275, 35178, 39393, 43932, 48807, 54030, 59613, 65568, 71907, 78642, 85785, 93348, 101343, 109782
Offset: 0

Views

Author

Henry Bottomley, Feb 13 2002

Keywords

Comments

5*a(n+1) is the sum of the products of the 10 distinct combinations of three consecutive numbers starting with n (using 1,2,3 the 10 combinations are 111 112 113 122 123 133 222 223 233 333; 1*1*1 + 1*1*2 + 1*1*3 + 1*2*2 + 1*2*3 + 1*3*3 + 2*2*2 + 2*2*3 + 2*3*3 + 3*3*3 = 90 = 5*a(2)). - J. M. Bergot, Mar 28 2014 [expanded by Jon E. Schoenfield, Feb 22 2015]

Examples

			1+2 = 3; 3+4+5+6 = 18; 7+8+9+10+11+12 = 57; 13+14+15+16+17+18+19+20 = 132.
		

Crossrefs

Programs

Formula

a(n) = 2*n^3 + n.
a(n) = A000217(A002378(n)) - A000217(A002378(n-1)).
a(n) = 3 * A005900(n).
a(n) = A001477(n) * A058331(n).
a(n) = A000578(n) + A034262(n).
G.f.: 3*x*(1+x)^2/(x-1)^4.
a(n) = A110450(n) - A110450(n-1). - J.S. Seneschal, Jul 01 2025

A069764 Frobenius number of the numerical semigroup generated by consecutive octahedral numbers.

Original entry on oeis.org

89, 773, 3611, 12179, 33349, 78889, 167383, 326471, 595409, 1027949, 1695539, 2690843, 4131581, 6164689, 8970799, 12769039, 17822153, 24441941, 32995019, 43908899, 57678389, 74872313, 96140551, 122221399, 153949249, 192262589, 238212323, 292970411, 357838829
Offset: 2

Views

Author

Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 18 2002

Keywords

Comments

The Frobenius number of a numerical semigroup generated by relatively prime integers a_1,...,a_n is the largest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Since consecutive octahedral numbers are relatively prime, they generate a numerical semigroup with a Frobenius number. The Frobenius number of a 2-generated semigroup has the formula ab-a-b.

Examples

			a(2)=89 because 89 is not a nonnegative linear combination of 6 and 19 (the second and third octahedral numbers), but all integers greater than 89 are.
		

Crossrefs

Programs

  • Mathematica
    FrobeniusNumber/@Partition[Rest[Table[(n(2n^2+1))/3,{n,30}]],2,1] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{89,773,3611,12179,33349,78889,167383},30] (* Harvey P. Dale, Nov 19 2015 *)

Formula

a(n) = ((1/3)*n*(2*n^2+1)-1)*((1/3)*(n+1)*(2*(n+1)^2+1)-1)-1.
G.f.: x^2*(89+150*x+69*x^2+20*x^3-13*x^4+6*x^5-x^6)/(1-x)^7. - Colin Barker, Feb 12 2012
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+ 21*a(n-5)- 7*a(n-6)+a(n-7). - Harvey P. Dale, Nov 19 2015

Extensions

More terms from Carl Najafi, Sep 10 2011

A100185 Structured meta-anti-prism numbers, the n-th number from a structured n-gonal anti-prism number sequence.

Original entry on oeis.org

1, 4, 19, 68, 185, 416, 819, 1464, 2433, 3820, 5731, 8284, 11609, 15848, 21155, 27696, 35649, 45204, 56563, 69940, 85561, 103664, 124499, 148328, 175425, 206076, 240579, 279244, 322393, 370360, 423491, 482144
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com)

Keywords

Examples

			There are no 1- or 2-gonal anti-prisms, so 1 and (2n) are used as the first and second terms since all the sequences begin as such.
		

Crossrefs

Cf. A005900, A000447, A096000, A100178, A100157, A100185 - structured anti-prisms; A006484 for other structured meta numbers; and A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(3*n^4-8*n^3+9*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Aug 03 2011

Formula

a(n) = (1/6)*(3*n^4 - 8*n^3 + 9*n^2 + 2*n).
G.f.: x*(1 - x + 9*x^2 + 3*x^3)/(1-x)^5. [Colin Barker, Jun 08 2012]

A008867 Triangle of truncated triangular numbers: k-th term in n-th row is number of dots in hexagon of sides k, n-k, k, n-k, k, n-k.

Original entry on oeis.org

1, 3, 3, 6, 7, 6, 10, 12, 12, 10, 15, 18, 19, 18, 15, 21, 25, 27, 27, 25, 21, 28, 33, 36, 37, 36, 33, 28, 36, 42, 46, 48, 48, 46, 42, 36, 45, 52, 57, 60, 61, 60, 57, 52, 45, 55, 63, 69, 73, 75, 75, 73, 69, 63, 55, 66, 75, 82, 87, 90, 91, 90, 87, 82, 75, 66, 78, 88, 96, 102, 106, 108, 108, 106, 102, 96, 88, 78
Offset: 2

Views

Author

Keywords

Comments

Closely related to A109439. The current sequence is made of truncated triangular numbers, the latter gives the full description. Both can help to build a cube with layers perpendicular to the great diagonal. E.g.: 15,18,19,18,15 in A008867 is a truncation of the lesser triangular numbers of 1,3,6,10,15,18,19,18,15,10,6,3,1 in A109439. - M. Dauchez (mdzzdm(AT)yahoo.fr), Sep 02 2005
The sequence is a triangle read by rows where the n-th row is obtained by multiplying by (1/3)*(n+1)*(2*(n+1)^2+1) the first row of the limit as k approaches infinity of P(n)^k where P(n) is the stochastic matrix associated with a variant of the Ehrenfest model using n balls. The elements of the stochastic matrix P(n) we have considered are given by P(n)[i,j] = n+1-(max(i,j)-min(i,j)), where each row must be normalized using the L1 norm and where i,j belong to the set {0,1,2,...,n}. They are defined as the probabilities of arriving in a state j given the previous state i. In particular the sum of every row of a stochastic matrix must be 1, and so the sum of the terms of the n-th row of this triangle is (1/3)*(n+1)*(2*(n+1)^2+1) (since the limit of a stochastic matrix is again a stochastic matrix). Furthermore, by the properties of Markov chains, we can interpret P(n)^k as the k-step transition matrix of this variant of the Ehrenfest model using n balls. It is important to note that the rows of the limit of the stochastic matrix are identical and since we know the first we know all the others. - Luca Onnis, Oct 29 2023

Examples

			Triangle begins:
n = 0:  1;
n = 1:  3,  3;
n = 2:  6,  7,  6;
n = 3: 10, 12, 12, 10;
n = 4: 15, 18, 19, 18, 15;
n = 5: 21, 25, 27, 27, 25, 21;
n = 6: 28, 33, 36, 37, 36, 33, 28;
		

References

  • Paul and Tatjana Ehrenfest, Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem, Physikalische Zeitschrift, vol. 8 (1907), pp. 311-314.

Crossrefs

Row sums are A005900(n-1).
Cf. A109439.

Programs

  • Maple
    T:= (n, k)-> n*(n-3)/2 - k^2+k*n+1:
    seq(seq(T(n,k), k=1..n-1), n=2..14);
  • Mathematica
    T[n_,k_] := n*(n-3)/2 - k^2 + k*n + 1; Table[T[n,k], {n,3,20}, {k,n,2,-1}] // Flatten (* Amiram Eldar, Dec 12 2018 *)

Formula

T(n,k) = n*(n-3)/2 - k^2 + k*n + 1.

A016687 Decimal expansion of log(64) = 6*log(2).

Original entry on oeis.org

4, 1, 5, 8, 8, 8, 3, 0, 8, 3, 3, 5, 9, 6, 7, 1, 8, 5, 6, 5, 0, 3, 3, 9, 2, 7, 2, 8, 7, 4, 9, 0, 5, 9, 4, 0, 8, 4, 5, 3, 0, 0, 0, 8, 0, 6, 1, 6, 1, 5, 3, 1, 5, 2, 4, 7, 2, 4, 0, 8, 0, 0, 5, 6, 9, 6, 0, 3, 6, 1, 7, 3, 1, 8, 1, 8, 1, 6, 8, 2, 9, 3, 6, 3, 5, 1, 7, 9, 9, 6, 1, 9, 7, 8, 5, 1, 2, 1, 2
Offset: 1

Views

Author

Keywords

Examples

			4.158883083359671856503392728749059408453000806161531524724080056960361...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A002162, A005900, A016492 (continued fraction), A016627, A016631.

Programs

  • Mathematica
    RealDigits[Log[64],10,120][[1]] (* Harvey P. Dale, May 06 2022 *)
  • PARI
    default(realprecision, 20080); x=log(64); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016687.txt", n, " ", d)); \\ Harry J. Smith, May 22 2009

Formula

Equals 2*A016631 = 3*A016627 = 6*A002162. - Alois P. Heinz, Aug 07 2023
From Peter Bala, Mar 05 2024: (Start)
log(64) = 4 + Sum_{n >= 1} (-1)^(n+1)/(p(n)*p(n+1)), where p(n) = n*(2*n^2 + 1)/3 = A005900.
Continued fraction: log(64) = 4 + 1/(6 + (1*2)/(6 + (2*3)/(6 + (3*4)/(6 + (4*5)/(6 + ... ))))). See A142983. Cf. A016627. (End)
Previous Showing 51-60 of 117 results. Next