cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A008911 a(n) = n^2*(n^2 - 1)/6.

Original entry on oeis.org

0, 0, 2, 12, 40, 100, 210, 392, 672, 1080, 1650, 2420, 3432, 4732, 6370, 8400, 10880, 13872, 17442, 21660, 26600, 32340, 38962, 46552, 55200, 65000, 76050, 88452, 102312, 117740, 134850, 153760, 174592, 197472, 222530, 249900, 279720, 312132
Offset: 0

Views

Author

Keywords

Comments

Number of equilateral triangles in rhombic portion of side n+1 in hexagonal lattice.
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Sum of squared distances on n X n board between n queens each on its own row and column. - Zak Seidov, Sep 04 2002
For queens "each on its column and row" the sum of squared distances does not depend on configuration - while sum of distances does.
Number of cycles of length 3 in the bishop's graph associated with an (n+1) X (n+1) chessboard. - Anton Voropaev (anton.n.voropaev(AT)gmail.com), Feb 01 2009
a(n) is number of ways to place 3 queens on an (n+1) X (n+1) chessboard so that they diagonally attack each other exactly 3 times. The maximal possible attack number, p=binomial(k,2)=3 for k=3 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form the corresponding complete graph. - Antal Pinter, Dec 27 2015
From a(1), convolution of the oblong numbers (A002378) with the odd numbers (A005408). - Bruno Berselli, Oct 24 2016
Consider the partitions of 2n into two parts (p,q) where p <= q. Then a(n) is the total volume of the family of rectangular prisms with dimensions p, p and |q-p|. - Wesley Ivan Hurt, Apr 15 2018

Examples

			a(2)=2 because on 2 X 2 board queens "each on its column and row" may take only two angular cells, then squared distance is 1^2+1^2=2. a(3)=12 because on 3 X 3 board queens "each on its column and row" make only two essentially distinct configurations: {1,2,3}, {1,3,2} and in both cases the sum of three squared distances is 12.
G.f.: 2*x^2 + 12*x^3 + 40*x^4 + 100*x^5 + 210*x^6 + 392*x^7 + 672*x^8 + ...
		

References

  • James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 6).

Crossrefs

Convolution of the oblong numbers with the even numbers: A033488.

Programs

  • GAP
    List([0..40], n-> n^2*(n^2-1)/6); # G. C. Greubel, Sep 13 2019
  • Magma
    [n^2*(n^2-1)/6: n in [0..40]]; // Vincenzo Librandi, Sep 14 2011
    
  • Maple
    A008911 := n->n^2*(n^2-1)/6; seq(A008911(n), n=0..40);
  • Mathematica
    a[m_]:= m^2(m^2-1)/6;
    Binomial[Range[0,40]^2, 2]/3 (* G. C. Greubel, Sep 13 2019 *)
  • PARI
    {a(n) = n^2*(n^2-1)/6};
    
  • Sage
    [n^2*(n^2-1)/6 for n in (0..40)] # G. C. Greubel, Sep 13 2019
    

Formula

G.f.: 2*x^2*(1+x)/(1-x)^5.
a(n) = 2*A002415(n) = A047928(n-1)/6 = A083374(n-1)/3 = A006011(n)*2/3. - Zerinvary Lajos, May 09 2007
a(n) = n*binomial(n+1,3). - Martin Renner, Apr 03 2011
a(n+1) = (n+1)*A000292(n). - Tom Copeland, Sep 13 2011
From G. C. Greubel, Sep 13 2019: (Start)
a(n) = binomial(n^2,2)/3.
E.g.f.: x^2*(6 + 6*x + x^2)*exp(x)/6. (End)
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=2} 1/a(n) = 21/2 - Pi^2.
Sum_{n>=2} (-1)^n/a(n) = (Pi^2 - 9)/2. (End)
a(n) = Sum_{j=0..n-1} binomial(n,2) + binomial(n,3). - Detlef Meya, Jan 20 2024

A089574 Column 4 of an array closely related to A083480. (Both arrays have shape sequence A083479).

Original entry on oeis.org

5, 32, 113, 299, 664, 1309, 2366, 4002, 6423, 9878, 14663, 21125, 29666, 40747, 54892, 72692, 94809, 121980, 155021, 194831, 242396, 298793, 365194, 442870, 533195, 637650, 757827, 895433, 1052294, 1230359, 1431704, 1658536, 1913197
Offset: 1

Views

Author

Alford Arnold, Dec 29 2003; extended May 04 2005

Keywords

Comments

The diagonals are finite and sum to A047970.
Values appear to be a transformation of A006468 (rooted planar maps). Also known as well-labeled trees (cf. A000168).
First differences of the conjectured polynomial formula for A006468. [From R. J. Mathar, Jun 26 2010]

Examples

			The array begins
1
2
4
7 1
11 5
16 14 2
22 30 12
29 55 39 5
37 91 95 32 1
		

Crossrefs

Cf. A000124 (column 1), A000330 (column 2), A086602 (column 3), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13).

Formula

Row sums are powers of 2.
a(n) = A000330(n) + A006011(n+1) + A034263(n-1).
a(n)= +6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6). G.f.: x*(5+2*x-4*x^2+x^3)/(x-1)^6. a(n) = n*(n+1)*(4*n^3+51*n^2+159*n+86)/120. [From R. J. Mathar, Jun 26 2010]

Extensions

Extended beyond a(8) by R. J. Mathar, Jun 26 2010

A107600 Column 5 of array illustrated in A089574 and related to A034261.

Original entry on oeis.org

1, 18, 101, 357, 978, 2274, 4711, 8954, 15915, 26806, 43197, 67079, 100932, 147798, 211359, 296020, 406997, 550410, 733381, 964137, 1252118, 1608090, 2044263, 2574414, 3214015, 3980366, 4892733, 5972491, 7243272, 8731118, 10464639
Offset: 9

Views

Author

Alford Arnold, May 17 2005

Keywords

Comments

The sequences in A089574 count ordered partitions. Sequence A001296 can be associated with 9 = 3+3+3. Six times sequence A005585, associated with 10 = 3+3+2+2. The other three sequences comprising A107600 are generated in A034261 and can be associated with 10 = 5 + 5 = 4 + 4 + 2 = 2 + 2 + 2 + 2 + 2.

Examples

			A107600(n) can be constructed from five other sequences as follows:
1...7...25...65...140.......A001296
....1...11...56...196.......A034264
....6...42..162...462.......6.*.A005585.
....3...18...60...150.......A006011
....1....5...14....30.......A000330
therefore
1..18..101..357...978.......A107600
		

Crossrefs

Programs

  • Maple
    a:= n-> `if` (n<9, 0, (92292 +(-6580 +(-5745 +(1535 +(-147+5*n) *n) *n) *n) *n) *n /720 -218): seq(a(n), n=9..45); # Alois P. Heinz, Nov 06 2009
  • Mathematica
    Select[CoefficientList[Series[(x^5-5x^4+7x^3+4x^2-11x-1)x^9/(x-1)^7, {x,0,50}],x],#>0&] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1,18,101,357,978,2274,4711},42] (* Harvey P. Dale, May 01 2011 *)

Formula

G.f.: (x^5 -5*x^4 +7*x^3 +4*x^2 -11*x -1) *x^9 /(x-1)^7. - Alois P. Heinz, Nov 06 2009

Extensions

More terms from Alois P. Heinz, Nov 06 2009

A124428 Triangle, read by rows: T(n,k) = binomial(floor(n/2),k)*binomial(floor((n+1)/2),k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 6, 3, 1, 9, 9, 1, 1, 12, 18, 4, 1, 16, 36, 16, 1, 1, 20, 60, 40, 5, 1, 25, 100, 100, 25, 1, 1, 30, 150, 200, 75, 6, 1, 36, 225, 400, 225, 36, 1, 1, 42, 315, 700, 525, 126, 7, 1, 49, 441, 1225, 1225, 441, 49, 1, 1, 56, 588, 1960, 2450, 1176, 196, 8
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2006

Keywords

Comments

Row sums form A001405, the central binomial coefficients: C(n,floor(n/2)). The eigenvector of this triangle is A124430.
T(n,k) is the number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) having k peaks. Example: T(5,2)=3 because, denoting U=(1,1), D=(1,-1), H=(1,0), we have HUDUD, UDHUD, and UDUDH. - Emeric Deutsch, Jun 01 2011
From Emeric Deutsch, Jan 18 2013: (Start)
T(n,k) is the number of Dyck prefixes of length n having k peaks. Example: T(5,2)=3 because we have (UD)(UD)U, (UD)U(UD), and U(UD)(UD); the peaks are shown between parentheses.
T(n,k) is the number of Dyck prefixes of length n having k ascents and descents of length >= 2. Example: T(5,2)=3 because we have (UU)(DD)U, (UU)D(UU), and (UUU)(DD); the ascents and descents of length >= 2 are shown between parentheses. (End)
T(n,k) is the number of noncrossing partitions of [n] having n-k blocks, such that the nontrivial blocks are of type {a,b}, with a < = n/2 and b > n/2. Such partitions have k nontrivial blocks, uniquely determined by the choice of k first elements among floor(n/2) elements, and the choice of k second elements among floor((n+1)/2) elements. Indeed, by planarity, any two blocs {a,b} and {c,d} satisfy a < c iff b > d. - Francesca Aicardi Nov 03 2022

Examples

			Triangle begins:
  1;
  1;
  1,   1;
  1,   2;
  1,   4,   1;
  1,   6,   3;
  1,   9,   9,   1;
  1,  12,  18,   4;
  1,  16,  36,  16,   1;
  1,  20,  60,  40,   5;
  1,  25, 100, 100,  25,   1;
  1,  30, 150, 200,  75,   6;
  1,  36, 225, 400, 225,  36,   1; ...
		

Crossrefs

Cf. A001405 (row sums), A056953, A026003, A124429 (antidiagonal sums), A124430 (eigenvector), A191521.
Columns = A002378, A006011, A006542, etc.

Programs

  • Magma
    [[Binomial(Floor(n/2), k)*Binomial(Floor((n+1)/2),k): k in [0..Floor(n/2)]]: n in [0..15]]; // G. C. Greubel, Feb 24 2019
    
  • Mathematica
    Table[Binomial[Floor[n/2], k]*Binomial[Floor[(n+1)/2], k], {n, 0, 15}, {k, 0, Floor[n/2]}]//Flatten (* G. C. Greubel, Feb 24 2019 *)
  • PARI
    T(n,k)=binomial(n\2,k)*binomial((n+1)\2,k)
    
  • Sage
    [[binomial(floor(n/2),k)*binomial(floor((n+1)/2),k) for k in (0..floor(n/2))] for n in (0..15)] # G. C. Greubel, Feb 24 2019

Formula

A056953(n) = Sum_{k=0..floor(n/2)} k!*T(n,k).
A026003(n) = Sum_{k=0..floor(n/2)} 2^k*T(n,k).

A108538 Column 10 of array illustrated in A089574 and related to A034261.

Original entry on oeis.org

1, 64, 731, 4553, 20155, 71272, 214653, 572743, 1389702, 3122752, 6585183, 13162741, 25131718, 46115029, 81722067, 140429357, 234772177, 382932581, 610826859, 954815625, 1465182669, 2210554686, 3283463257, 4807283267, 6944818576, 9908846494, 13974977743, 19497238421, 26926835328
Offset: 0

Views

Author

Alford Arnold, Jul 05 2005

Keywords

Comments

A109820 can be decomposed into 30 sequences. These 30 associated sequences can be inferred from the 30 ways of partitioning the number nine: 9 81 72 63 54 ... the complete listing is available in the Handbook of Mathematical Functions (1964) p. 831. Consider, for example, the three ways of partitioning the number three: 3, 21 and 111; prepend each partition then add one to each value - yielding 44, 332 and 2222. These "associated" partitions are then used to derive the associated sequences. 44 => A000330, 332 => A006011 and 2222 => A034263. Summing these three sequences yields A089574.

Examples

			a(1) = 1 because the only associated partition 4444 for n = 16 cannot be permuted.
a(2) = 64 because the associated partitions can be permuted in 3 + 4 + 12 + 9 + 20 + 10 + 6 ways when n = 17.
		

Crossrefs

Cf. A000330 (column 2), A086602 (column 3), A089574 (column 4), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13)

Formula

G.f. 1+64*x -x^2*(-731 +4219*x -13765*x^2 +30910*x^3 -49804*x^4 +58458*x^5 -50237*x^6 +31394*x^7 -13931*x^8 +4171*x^9 -757*x^10 +63*x^11)/(x-1)^12 . - R. J. Mathar, Aug 28 2018

Extensions

Extended by R. J. Mathar, Aug 28 2018

A112851 a(n) = (n-1)*n*(n+1)*(n+2)*(2*n+1)/40.

Original entry on oeis.org

0, 0, 3, 21, 81, 231, 546, 1134, 2142, 3762, 6237, 9867, 15015, 22113, 31668, 44268, 60588, 81396, 107559, 140049, 179949, 228459, 286902, 356730, 439530, 537030, 651105, 783783, 937251, 1113861, 1316136, 1546776, 1808664, 2104872, 2438667, 2813517, 3233097
Offset: 0

Views

Author

Alford Arnold, Sep 24 2005

Keywords

Comments

A112851 is the fourth sequence in A112852.
Also the Wiener index of the (n-1)-triangular grid graph (indexed so the 0-triangular grid graph is the singleton). - Eric W. Weisstein, Sep 08 2017

References

  • L. B. W. Jolley, Summation of Series, Dover. N.Y., 1961, eq. (54), page 10.

Crossrefs

Partial sums of sequence A006011.

Programs

  • Magma
    [(n-1)*n*(n+1)*(n+2)*(2*n+1)/40: n in [0..40]]; // Vincenzo Librandi, Feb 06 2014
    
  • Maple
    a:=n->sum(j^4-j^2, j=0..n)/4: seq(a(n), n=0..36); # Zerinvary Lajos, May 08 2008
  • Mathematica
    Table[(n - 1) n (n + 1)(n + 2)(2 n + 1)/40, {n, 0, 30}] (* Josh Locker *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 3, 21, 81, 231}, 40] (* Harvey P. Dale, Oct 28 2014 *)
  • PARI
    for(n=0,50, print1((n-1)*n*(n+1)*(n+2)*(2*n+1)/40, ", ")) \\ G. C. Greubel, Jul 23 2017
    
  • PARI
    concat(vector(2), Vec(3*x^2*(1 + x) / (1 - x)^6 + O(x^30))) \\ Colin Barker, Sep 08 2017

Formula

4*a(n+1) = 1*2^2*3 + 2*3^2*4 + 3*4^2*5 + ... (n terms). [Jolley]
a(n) = Sum_{i=0..n} A000217(i-1)*A000217(i), where A000217(-1)=0. - Bruno Berselli, Feb 05 2014
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5. - Harvey P. Dale, Oct 28 2014
G.f.: 3*x^2*(1 + x) / (1 - x)^6. - Colin Barker, Sep 08 2017
a(n) = (1/2) * Sum_{k=0..n} C(k^2,2). - Wesley Ivan Hurt, Sep 23 2017
a(n) = Sum_{i=0..n} A000217(i)*A033428(n-i). - Bruno Berselli, Mar 06 2018
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=2} 1/a(n) = 40*(16*log(2) - 11)/9.
Sum_{n>=2} (-1)^n/a(n) = 20*(8*Pi - 25)/9. (End)

Extensions

More terms from Josh Locker (jlocker(AT)mail.rochester.edu) and Michael W. Motily (mwm5036(AT)psu.edu), Oct 04 2005

A163933 Third right hand column of triangle A163932.

Original entry on oeis.org

11, 105, 510, 1750, 4830, 11466, 24360, 47520, 86625, 149435, 246246, 390390, 598780, 892500, 1297440, 1844976, 2572695, 3525165, 4754750, 6322470, 8298906, 10765150, 13813800, 17550000, 22092525, 27574911, 34146630, 41974310
Offset: 3

Views

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Crossrefs

Cf. A048994 (Stirling1).
Equals the third right hand column of triangle A163932.
A000217 and A006011 are the first and second right hand columns.

Programs

  • Maple
    nmax:=30; with(combinat, stirling1): for n from 1 to nmax do for m from 1 to n do a(n,m):=(-1)^(n+m)*(m)*(m+1)*stirling1(n+1,m+1)/2 od: od: seq(a(n,n-2),n=3..nmax);
  • Mathematica
    Table[(n-2)(n-1)StirlingS1[n+1,n-1]/2,{n,3,30}] (* Harvey P. Dale, Oct 09 2011 *)

Formula

a(n) = (n-2)*(n-1)*Stirling1(n+1,n-1)/2.
G.f.: z^3*(11 + 6*z^2 + 28*z)/(1-z)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 9. - Chai Wah Wu, Jan 25 2021

A218979 Numbers n such that some sum of n consecutive positive cubes is a square.

Original entry on oeis.org

1, 3, 5, 7, 8, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 25, 27, 28, 29, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 53, 54, 55, 57, 59, 60, 61, 63, 64, 65, 67, 69, 71, 72, 73, 75, 76, 77, 79, 81, 82, 83, 85, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99
Offset: 1

Views

Author

Michel Marcus, Nov 08 2012

Keywords

Comments

The trivial solutions with x = 0 and x = 1 are not considered here.
Numbers n such that x^3 + (x+1)^3 + ... + (x+n-1)^3 = y^2 has nontrivial solutions over the integers.
The nontrivial solutions are found by solving Y^2 = X^3 + d(n)*X with d(n) = n^2*(n^2-1)/4 (A006011), Y = n*y and X = n*x + (1/2)*n*(n-1). [Corrected by Derek Orr, Aug 30 2014]
x^3 + (x+1)^3 + ... + (x+n-1)^3 = y^2 can also be written as y^2 = n(x + (n-1)/2)(n(x + (n-1)/2) + x(x-1)). - Vladimir Pletser, Aug 30 2014
There are 892 triples (n,x,y), with n and x less than 10^5 (1 < n,x < 10^5), which are nontrivial solutions of x^3 + (x+1)^3 + ... + (x+n-1)^3 = y^2 (note that (n,x,y) corresponds to (M,a,c) in A253679, A253680, A253681, A253707, A253708, A253709, A253724, A253725). - Vladimir Pletser, Jan 10 2015

Examples

			See "Examples of triples" link.
		

Crossrefs

Programs

  • PARI
    a(n)=for(x=2,10^7, /* note this limit only generates the terms in the data section */ X = n*x + (1/2)*n*(n-1); d=n^2*(n^2-1)/4;if(issquare(X^3+d*X),return(x)))
    n=1;while(n<100,if(a(n),print1(n,", "));n++) \\ Derek Orr, Aug 30 2014

Extensions

Name changed, a(1) = 1 prepended and a(39)-a(68) from Derek Orr, Aug 30 2014
More terms for 50Vladimir Pletser, Jan 10 2015

A228317 The hyper-Wiener index of the triangular graph T(n) (n >= 1).

Original entry on oeis.org

0, 0, 3, 21, 75, 195, 420, 798, 1386, 2250, 3465, 5115, 7293, 10101, 13650, 18060, 23460, 29988, 37791, 47025, 57855, 70455, 85008, 101706, 120750, 142350, 166725, 194103, 224721, 258825, 296670, 338520, 384648, 435336, 490875, 551565, 617715, 689643
Offset: 1

Views

Author

Emeric Deutsch, Aug 26 2013

Keywords

Comments

The triangular graph T(n) is the graph whose vertices represent the 2-subsets of {1,2,...,n} and two vertices are adjacent provided the corresponding 2-subsets have a nonempty intersection.
The triangular graph T(n) is a strongly regular graph with parameters n*(n-1)/2, 2*(n-2), n-2, and 4 (see the Brualdi and Ryser reference, Theorem 5.2.4).

References

  • R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.

Crossrefs

Programs

  • Maple
    a := proc (n) options operator, arrow: (1/8)*n*(n-1)*(n-2)*(3*n-5) end proc: seq(a(n), n = 1 .. 38);
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,0,3,21,75},40] (* Harvey P. Dale, Feb 23 2023 *)

Formula

a(n) = n*(n - 1)*(n - 2)*(3*n - 5)/8.
G.f.: 3*x^3*(1 + 2*x)/(1 - x)^5.
The Hosoya-Wiener polynomial of T(n) is (1/8)*n*(n - 1)*(4 + 4*(n-2)*t + (n - 2)*(n - 3)*t^2).
a(n) = 3*A001296(n-2) for n >= 2. - R. J. Mathar, Mar 05 2017

A131635 Triangle T(n,m)=m*n*binomial(m+n,m)^2/(2*(m+n)) read by rows.

Original entry on oeis.org

1, 3, 18, 6, 60, 300, 10, 150, 1050, 4900, 15, 315, 2940, 17640, 79380, 21, 588, 7056, 52920, 291060, 1280664, 28, 1008, 15120, 138600, 914760, 4756752, 20612592, 36, 1620, 29700, 326700, 2548260, 15459444, 77297220, 331273800, 45, 2475, 54450
Offset: 1

Views

Author

R. J. Mathar, Sep 05 2007

Keywords

Comments

First two columns are essentially A000217 and A006011.

Examples

			Triangle is symmetric in the two indices and starts
1,
3, 18,
6, 60, 300,
10, 150, 1050, 4900,
15, 315, 2940, 17640, 79380,
21, 588, 7056, 52920, 291060, 1280664,
		

Programs

  • Maple
    a := proc(n,m) m*n*(binomial(m+n,n))^2/2/(m+n) ; end: for n from 1 to 10 do for m from 1 to n do printf("%d, ",a(n,m)) ; od: od:
  • Mathematica
    Flatten[Table[m*n*Binomial[m+n,m]^2/(2(m+n)),{n,10},{m,n}]] (* Harvey P. Dale, Dec 24 2011 *)
  • PARI
    A131635(n,m) = m*n*binomial(m+n,m)^2/(2*(m+n))

Formula

T(n,m)=m*n*A000290(A007318(n+m,m))/[2(m+n)].
Previous Showing 11-20 of 23 results. Next