cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 79 results. Next

A293490 a(n) = Sum_{k=0..n} binomial(2*k, k)*binomial(2*n-k, n).

Original entry on oeis.org

1, 4, 18, 84, 400, 1932, 9436, 46512, 231066, 1155660, 5813808, 29396952, 149305884, 761282032, 3894953640, 19987999696, 102847396416, 530446714812, 2741576339716, 14196136939600, 73631851898220, 382483602131400, 1989514312826400, 10361255764532400, 54020655931542300, 281933439875693424
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 10 2017

Keywords

Comments

Main diagonal of iterated partial sums array of central binomial coefficients (starting with the first partial sums).

Crossrefs

Programs

  • GAP
    A293490 := Concatenation([1], List([1..3*10^2],n -> Sum([0..n],k -> Binomial(2*k, k)*(Binomial(2*n - k, n))))); # Muniru A Asiru, Oct 15 2017
    
  • Mathematica
    Table[Sum[Binomial[2 k, k] Binomial[2 n - k, n], {k, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[1/(Sqrt[1 - 4 x] (1 - x)^(n + 1)), {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[(1/(1 - x)^(n + 1)) 1/(1 - 2 x/(1 + ContinuedFractionK[-x, 1, {k, 1, n}])), {x, 0, n}], {n, 0, 25}]
    CoefficientList[Series[1/(Sqrt[2 Sqrt[1-4 x]-1] Sqrt[1-4 x]),{x,0,25}],x] (* Alexander M. Haupt, Jun 24 2018 *)
  • PARI
    a(n) = sum(k=0, n, binomial(2*k, k)*binomial(2*n-k, n)); \\ Michel Marcus, Oct 15 2017

Formula

a(n) = [x^n] 1/(sqrt(1 - 4*x)*(1 - x)^(n+1)).
a(n) = [x^n] 1/((1 - x)^(n+1)*(1 - 2*x/(1 - x/(1 - x/(1 - x/(1 - ...)))))), a continued fraction.
a(n) = 4^n*Gamma(n+1/2)*2F1(-n,n+1; 1/2-n; 1/4)/(sqrt(Pi)*Gamma(n+1)).
From Vaclav Kotesovec, Oct 16 2017: (Start)
D-finite with recurrence: 3*(n-1)*n*a(n) = 14*(n-1)*(2*n-1)*a(n-1) - 4*(4*n-5)*(4*n-3)*a(n-2).
a(n) ~ 2^(4*n + 3/2) / (3^(n + 1/2) * sqrt(Pi*n)).
(End)
G.f.: 1/(sqrt(2*sqrt(1-4*x)-1)*sqrt(1-4*x)). - Alexander M. Haupt, Jun 24 2018

A307354 a(n) = Sum_{0<=i<=j<=n} (-1)^(i+j) * (i+j)!/(i!*j!).

Original entry on oeis.org

1, 2, 6, 19, 65, 231, 841, 3110, 11628, 43834, 166298, 634140, 2428336, 9331688, 35967462, 138987715, 538287881, 2088842463, 8119916647, 31613327405, 123251518641, 481125828853, 1880262896537, 7355767408395, 28803717914791, 112887697489907, 442784607413427
Offset: 0

Views

Author

Seiichi Manyama, Apr 03 2019

Keywords

Crossrefs

Partial sums of A026641. - Seiichi Manyama, Jan 30 2023

Programs

  • Mathematica
    Table[Sum[Sum[(-1)^(i + j)*(i + j)!/(i!*j!), {i, 0, j}], {j, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Apr 04 2019 *)
  • PARI
    a(n) = sum(i=0, n, sum(j=i, n, (-1)^(i+j)*(i+j)!/(i!*j!)));
    
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(2*n-3*k, n)); \\ Seiichi Manyama, Jan 29 2023
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+x^3*(2/(1+sqrt(1-4*x)))^3))) \\ Seiichi Manyama, Jan 29 2023

Formula

a(n) = (A006134(n) + A120305(n))/2.
From Vaclav Kotesovec, Apr 04 2019: (Start)
Recurrence: 2*n*a(n) = (9*n-4)*a(n-1) - (3*n-2)*a(n-2) - 2*(2*n-1)*a(n-3).
a(n) ~ 2^(2*n+3) / (9*sqrt(Pi*n)). (End)
From Seiichi Manyama, Jan 29 2023: (Start)
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-3*k,n).
G.f.: 1 / ( sqrt(1-4*x) * (1 + x^3 * c(x)^3) ), where c(x) is the g.f. of A000108. (End)
a(n) = [x^n] 1/((1+x^3) * (1-x)^(n+1)). - Seiichi Manyama, Apr 08 2024

A323222 A(n, k) = [x^k] (1 - 4*x)^(-n/2)*x/(1 - x), square array read by ascending antidiagonals with n >= 0 and k >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 9, 1, 0, 1, 7, 21, 29, 1, 0, 1, 9, 37, 85, 99, 1, 0, 1, 11, 57, 177, 341, 351, 1, 0, 1, 13, 81, 313, 807, 1365, 1275, 1, 0, 1, 15, 109, 501, 1593, 3579, 5461, 4707, 1, 0, 1, 17, 141, 749, 2811, 7737, 15591, 21845, 17577, 1
Offset: 0

Views

Author

Peter Luschny, Jan 24 2019

Keywords

Comments

General asymptotic formula for g.f. (1 - 4*x)^(-j/2)*x/(1 - x) and fixed j>0 is a(n) ~ n^(j/2 - 1) * 4^n / (3*Gamma(j/2)). - Vaclav Kotesovec, Jan 29 2019

Examples

			[n\k] 0  1   2    3     4      5       6       7        8         9
-------------------------------------------------------------------
[0]   0, 1,  1,   1,    1,     1,      1,      1,       1,        1, ... A057427
[1]   0, 1,  3,   9,   29,    99,    351,   1275,    4707,    17577, ... A006134
[2]   0, 1,  5,  21,   85,   341,   1365,   5461,   21845,    87381, ... A002450
[3]   0, 1,  7,  37,  177,   807,   3579,  15591,   67071,   285861, ... A277178
[4]   0, 1,  9,  57,  313,  1593,   7737,  36409,  167481,   757305, ... A014916
[5]   0, 1, 11,  81,  501,  2811,  14823,  74883,  366603,  1752273, ... A323223
[6]   0, 1, 13, 109,  749,  4589,  26093, 140781,  730605,  3679725, ...
[7]   0, 1, 15, 141, 1065,  7071,  43107, 247311, 1355847,  7175661, ...
[8]   0, 1, 17, 177, 1457, 10417,  67761, 411825, 2377905, 13191345, ...
[9]   0, 1, 19, 217, 1933, 14803, 102319, 656587, 3982195, 23104441, ...
Triangle given by antidiagonals:
0;
0, 1;
0, 1,  1;
0, 1,  3,   1;
0, 1,  5,   9,   1;
0, 1,  7,  21,  29,    1;
0, 1,  9,  37,  85,   99,    1;
0, 1, 11,  57, 177,  341,  351,    1;
0, 1, 13,  81, 313,  807, 1365, 1275,    1;
0, 1, 15, 109, 501, 1593, 3579, 5461, 4707, 1;
		

Crossrefs

Sums of antidiagonals are A323217. Main diagonal is A323219.
Rows: A057427 (n=0), A006134 (n=1), A002450 (n=2), A277178 (n=3), A014916 (n=4), A323223 (n=5).
Columns: A005408 (k=2), A059993 (k=3), A323218 (k=4).
Similar array based on Catalan numbers is A323224.

Programs

  • Maple
    Row := proc(n, len) local ogf, ser; ogf := (1 - 4*x)^(-n/2)*x/(1 - x);
    ser := series(ogf, x, (n+1)*len+1); seq(coeff(ser, x, j), j=0..len) end:
    for n from 0 to 9 do Row(n, 9) od;
  • Mathematica
    BF[N_, K_] := Module[{}, r[n_, k_] := FrobeniusSolve[ConstantArray[1, n], k];
    X[n_] := Flatten[Table[r[N, j], {j, 0, n - 1}], 1];
    CentralBinomial[n_] := Binomial[2 n, n];
    Sum[Product[CentralBinomial[m[[i]]], {i, 1, N}], {m , X[K]}]];
    Trow[n_] := Table[BF[n, k], {k, 0, 9}]; Table[Trow[n], {n, 1, 9}]

Formula

For n>0 and k>0 let X(n, k) denote the set of all tuples of length n with elements from {0, ..., k-1} with sum < k. Let b(m) = binomial(2*m, m). Then A(n, k) = Sum_{(j1,...,jn) in X(n, k)} b(j1)*b(j2)*...*b(jn).

A006135 T(n+2,2) from table A045912 of characteristic polynomial of negative Pascal matrix.

Original entry on oeis.org

1, 9, 72, 626, 6084, 64974, 744193, 8965323, 112088583, 1441465015, 18952951005, 253712542005, 3447133563343, 47425573790397, 659506609478472, 9256644358552742, 130981854694547790, 1866712391002772586
Offset: 0

Views

Author

Keywords

Examples

			1 + 9*x + 72*x^2 + 626*x^3 + 6084*x^4 + 64974*x^5 + 744193*x^6 + 8965323*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f:= n -> coeff(LinearAlgebra:-CharacteristicPolynomial(Matrix(n+2,n+2,(i,j) -> -binomial(i+j-2,i-1)),lambda),lambda,2):
    map(f, [$0..20]); # Robert Israel, Jul 09 2018
  • PARI
    {a(n) = if( n<0, 0, polcoeff( charpoly( matrix( n+2, n+2, i, j, -binomial( i+j-2, i-1))), 2))} /* Michael Somos, Jul 10 2002 */

Extensions

Edited by Michael Somos, Jul 19 2002

A096465 Triangle (read by rows) formed by setting all entries in the first column and in the main diagonal ((i,i) entries) to 1 and the rest of the entries by the recursion T(n, k) = T(n-1, k) + T(n, k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 8, 9, 1, 1, 5, 13, 22, 23, 1, 1, 6, 19, 41, 64, 65, 1, 1, 7, 26, 67, 131, 196, 197, 1, 1, 8, 34, 101, 232, 428, 625, 626, 1, 1, 9, 43, 144, 376, 804, 1429, 2055, 2056, 1, 1, 10, 53, 197, 573, 1377, 2806, 4861, 6917, 6918, 1, 1, 11, 64, 261, 834, 2211, 5017, 9878, 16795, 23713, 23714, 1
Offset: 0

Views

Author

Gerald McGarvey, Aug 12 2004

Keywords

Comments

The third column is A034856 (binomial(n+1, 2) + n-1).
The row sums are A014137 (partial sums of Catalan numbers (A000108)).
The "1st subdiagonal" ((i+1,i) entries) are also A014137.
The "2nd subdiagonal" ((i+2,i) entries) is A014138 ( Partial sums of Catalan numbers (starting 1,2,5,...)).
The "3rd subdiagonal" ((i+3,i) entries) is A001453 (Catalan numbers - 1.)
This is the reverse of A091491 - see A091491 for more information. The sequence of antidiagonal sums gives A124642. - Gerald McGarvey, Dec 09 2006

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  4,  1;
  1, 4,  8,  9,   1;
  1, 5, 13, 22,  23,   1;
  1, 6, 19, 41,  64,  65,   1;
  1, 7, 26, 67, 131, 196, 197, 1;
		

Crossrefs

Programs

  • Haskell
    a096465 n k = a096465_tabl !! n !! k
    a096465_row n = a096465_tabl !! n
    a096465_tabl = map reverse a091491_tabl
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Magma
    A096465:= func< n,k | k eq n select 1 else (n-k)*(&+[Binomial(n+k-2*j, n-j)/(n+k-2*j): j in [0..k]]) >;
    [A096465(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 30 2021
    
  • Maple
    A096465:= (n,k)-> `if`(k=n, 1, (n-k)*add(binomial(n+k-2*j, n-j)/(n+k-2*j), j=0..k));
    seq(seq(A096465(n,k), k=0..n), n=0..12) # G. C. Greubel, Apr 30 2021
  • Mathematica
    T[, 0]= 1; T[n, n_]= 1; T[n_, m_]:= T[n, m]= T[n-1, m] + T[n, m-1]; T[n_, m_] /; n < 0 || m > n = 0; Table[T[n, m], {n, 0, 12}, {m, 0, n}]//Flatten (* Jean-François Alcover, Dec 17 2012 *)
  • Sage
    def A096465(n,k): return 1 if (k==n) else (n-k)*sum( binomial(n+k-2*j, n-j)/(n+k-2*j) for j in (0..k))
    flatten([[A096465(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 30 2021

Formula

From G. C. Greubel, Apr 30 2021: (Start)
T(n, k) = (n-k) * Sum_{j=0..k} binomial(n+k-2*j, n-j)/(n+k-2*j) with T(n,n) = 1.
T(n, k) = A091491(n, n-k).
Sum_{k=0..n} T(n,k) = Sum_{j=0..n} A000108(j) = A014137(n). (End)

Extensions

Offset changed by Reinhard Zumkeller, Jul 12 2012

A106187 Sequence array for central binomial numbers A000984.

Original entry on oeis.org

1, 2, 1, 6, 2, 1, 20, 6, 2, 1, 70, 20, 6, 2, 1, 252, 70, 20, 6, 2, 1, 924, 252, 70, 20, 6, 2, 1, 3432, 924, 252, 70, 20, 6, 2, 1, 12870, 3432, 924, 252, 70, 20, 6, 2, 1, 48620, 12870, 3432, 924, 252, 70, 20, 6, 2, 1, 184756, 48620, 12870, 3432, 924, 252, 70, 20, 6, 2, 1
Offset: 0

Views

Author

Paul Barry, Apr 24 2005

Keywords

Examples

			Triangle begins:
    1;
    2,  1;
    6,  2, 1;
   20,  6, 2, 1;
   70, 20, 6, 2, 1;
  252, 70, 20, 6, 2, 1;
  ...
The matrix inverse starts:
   1;
  -2,1;
  -2,-2,1;
  -4,-2,-2,1;
  -10,-4,-2,-2,1;
  -28,-10,-4,-2,-2,1;
  -84,-28,-10,-4,-2,-2,1;
  -264,-84,-28,-10,-4,-2,-2,1;
apparently related to A002420. - _R. J. Mathar_, Apr 08 2013
		

Crossrefs

Row sums are A006134.
Antidiagonal sums are A106188.
Cf. A000984.

Programs

  • Maple
    A106187 := proc(n,k)
        binomial(2*(n-k),n-k) ;
    end proc: # R. J. Mathar, Apr 08 2013
  • Mathematica
    T[n_, k_] := (((2*n - 2*k)!)/((n - k)!)^2); Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Detlef Meya, Aug 11 2024 *)

Formula

T(n, k) = binomial(2*(n-k), n-k).
Riordan array (1/sqrt(1-4x), x).

A106188 Expansion of 1/((1-x^2)*sqrt(1-4*x)).

Original entry on oeis.org

1, 2, 7, 22, 77, 274, 1001, 3706, 13871, 52326, 198627, 757758, 2902783, 11158358, 43019383, 166275878, 644099773, 2499882098, 9719235073, 37845145898, 147565763893, 576103020338, 2251664727613, 8809533747938, 34499268410713
Offset: 0

Views

Author

Paul Barry, Apr 24 2005

Keywords

Comments

Diagonal sums of number triangle A106187.

Examples

			1 + 2*x + 7*x^2 + 22*x^3 + 77*x^4 + 274*x^5 + 1001*x^6 + 3706*x^7 + 13871*x^8 + ...
		

Crossrefs

Cf. A006134, A054108. Convolution of A000984 and A059841.

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x^2)*Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 03 2014 *)
  • PARI
    x='x+O('x^50); Vec(1/((1-x^2)*sqrt(1-4*x))) \\ G. C. Greubel, Mar 16 2017

Formula

G.f. 1 / ((1 - x^2) * sqrt(1 - 4*x)).
a(n)=sum{k=0..floor(n/2), binomial(2(n-2k), n-2k)}.
PSUMSIGN transform of A006134. a(n+1) + a(n) = A006134(n). a(n) = Sum_{k=0..n} (-1)^k * binomial(2 * (n-k), n-k). - Michael Somos, Jun 20 2012
First difference is A054108. a(n+1) - a(n) = A054108(n). - Michael Somos, Jun 20 2012
D-finite with recurrence: n*a(n)+2*(1-2*n)*a(n-1) -n*a(n-2) +2*(2*n-1)*a(n-3)=0. - R. J. Mathar, Nov 09 2012
a(n) ~ 2^(2*n+4) / (15*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 03 2014

A120580 Hankel transform of Sum_{k=0..n} C(2k,k).

Original entry on oeis.org

1, 0, -4, -8, 0, 32, 64, 0, -256, -512, 0, 2048, 4096, 0, -16384, -32768, 0, 131072, 262144, 0, -1048576, -2097152, 0, 8388608, 16777216, 0, -67108864, -134217728, 0, 536870912, 1073741824, 0, -4294967296, -8589934592, 0, 34359738368, 68719476736, 0, -274877906944, -549755813888, 0
Offset: 0

Views

Author

Paul Barry, Jun 15 2006

Keywords

Comments

Hankel transform of A006134.
Hankel transform of A098479. - Paul Barry, Sep 19 2008
Hankel transform of A025565. - Paul Barry, Mar 26 2010

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-4},{1,0},50] (* Harvey P. Dale, Feb 13 2023 *)

Formula

G.f.: (1-2x)/(1-2x+4x^2).
a(n) = 2^n*(cos(Pi*n/3)-sin(Pi*n/3)/sqrt(3)).
E.g.f.: exp(x)*(cos(sqrt(3)*x) - sin(sqrt(3)*x)/sqrt(3)). - Stefano Spezia, Jul 15 2024

A167860 Primes p dividing every A167859(m) from m=(p-1)/2 to m=(p-1).

Original entry on oeis.org

7, 47, 191, 383, 439, 1151, 1399, 2351, 2879, 3119, 3511, 3559, 4127, 5087, 5431, 6911, 8887, 9127, 9791, 9887, 12391, 13151, 14407, 15551, 16607, 19543, 20399, 21031, 21319, 21839, 23039, 25391, 26399, 28087, 28463, 28711, 29287, 33223, 39551, 43103, 44879, 46271
Offset: 1

Views

Author

Alexander Adamchuk, Nov 13 2009

Keywords

Comments

Apparently A167860 is a subset of primes of the form 8*k + 7 (A007522).
Every A167859(m) from m=(p-1)/2 to m=(p-1) is divisible by prime p belonging to A167860.
7^3 divides A167859(13) and 7^2 divides A167859(10)-A167859(13).
Every A167859(m) from m=(kp-1 - (p-1)/2) to m=(kp-1) is divisible by prime p from A167860.
Every A167859(m) from m=((p^2-1)/2) to m=(p^2-1) is divisible by prime p from A167860. For p=7 every A167859(m) from m=((p^3-1)/2) to m=(p^3-1) and from m=((p^4-1)/2) to m(p^4-1)is divisible by p^2.

Crossrefs

Programs

  • Maple
    A167859 := proc(n)
        option remember;
        if n <= 1 then
            add( (binomial(2*k, k)/2^k)^2, k=0..n) ;
            4^n*% ;
        else
            4*(5*n^2 - 4*n + 1)*procname(n-1) - 16*(2*n - 1)^2*procname(n-2) ;
            %/n^2 ;
        end if;
    end proc:
    isA167860 := proc(p)
        local m ;
        for m from (p-1)/2 to p-1 do
            if modp(A167859(m),p) > 0 then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A167860 := proc(n)
        option remember ;
        if n = 0 then
            2;
        else
            p := nextprime(procname(n-1)) ;
            while not isA167860(p) do
                p := nextprime(p) ;
            end do ;
            return p;
        end if;
    end proc:
    seq(A167860(n),n=1..10) ; # R. J. Mathar, Jan 22 2025
  • PARI
    is(p) = if(isprime(p)&&p%2, my(m=Mod(1, p), s=m); for(k=1, p\2, s+=(m*=(2*k-1)/k)^2); !s, 0); \\ Jinyuan Wang, Jul 24 2022

Extensions

More terms from Jinyuan Wang, Jul 24 2022

A006136 T(n+3,3) from table A045912 of characteristic polynomial of negative Pascal matrix.

Original entry on oeis.org

1, 29, 626, 13869, 347020, 9952274, 321541977, 11416400590, 435869304863, 17605464402686, 743624059688891, 32572923621373010, 1470621027107356485, 68120063089374617281, 3225635202844511176442, 155695310201341829770911
Offset: 0

Views

Author

Keywords

Examples

			1 + 29*x + 626*x^2 + 13869*x^3 + 347020*x^4 + 9952274*x^5 + 321541977*x^6 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    {a(n) = if( n<0, 0, polcoeff( charpoly( matrix( n+3, n+3, i, j, -binomial( i+j-2, i-1))), 3))} /* Michael Somos, Jul 10 2002 */

Extensions

Edited by Michael Somos, Jul 19 2002
Previous Showing 41-50 of 79 results. Next