cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 106 results. Next

A172634 Number of n X 3 0..2 arrays with row sums 3 and column sums n.

Original entry on oeis.org

1, 1, 7, 31, 175, 991, 5881, 35617, 219871, 1376095, 8710537, 55644337, 358198369, 2320792657, 15120204295, 98984058271, 650725327231, 4293779332927, 28425752310361, 188739799967425, 1256510215733185, 8385127334900305, 56078904057164215, 375796823748323215
Offset: 0

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Comments

Inverse binomial transform of the Franel numbers (A000172). - Paul D. Hanna, Feb 26 2012
a(n) is the constant term in the expansion of (1 + x + y + 1/x + 1/y + x/y + y/x)^n. - Seiichi Manyama, Oct 26 2019
a(n) is the constant term in the expansion of (-1 + (1 + x) * (1 + y) + (1 + 1/x) * (1 + 1/y))^n. - Seiichi Manyama, Oct 27 2019
a(n) is the number of n step closed walks on the hexagonal lattice with loops at each node. A step along a loop leaves the position unchanged. The bijection is as follows: after subtracting 1 from each element in the array, values are -1, 0 or 1 and row and column sums are zero. There are only seven possibilities for each row. An all zero row corresponds with a step along the loop leaving the position unchanged and the others to a unit step in each of the six possible directions. This justifies that this sequence is the binomial transform of A002898. - Andrew Howroyd, May 09 2020

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 31*x^3 + 175*x^4 + 991*x^5 + 5881*x^6 +...
G.f.: A(x) = 1/(1-x) + 6*x^2*(1+x)/(1-x)^4 + 90*x^4*(1+x)^2/(1-x)^7 + 1680*x^6*(1+x)^3/(1-x)^10 + 34650*x^8*(1+x)^4/(1-x)^13 +...+ A006480(n)*x^(2*n)*(1+x)^n/(1-x)^(3*n+1) +...
		

Crossrefs

Column k=3 of A328747 and A334549.

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[(3*k)!/k!^3*x^(2*k)*(1+x)^k/(1-x)^(3*k+1),{k,0,n}],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)*(1+x)^m/(1-x + x*O(x^n))^(3*m+1)),n)} \\ Paul D. Hanna, Feb 26 2012
    
  • PARI
    a(n)={sum(i=0, n, sum(j=0, i, (-1)^(n-i)*binomial(n, i)*binomial(i, j)^3))} \\ Andrew Howroyd, May 09 2020

Formula

From Paul D. Hanna, Feb 26 2012: (Start)
G.f.: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)*(1+x)^n / (1-x)^(3*n+1).
Equals the binomial transform of A002898.
a(n) = Sum_{k=0..n} (-1)^(n+k) * binomial(n, k) * A000172(k), where A000172(k) = Sum_{j=0..k} binomial(k,j)^3 forms the Franel numbers.
(End)
Recurrence: n^2*a(n) = (2*n-1)^2*a(n-1) + 19*(n-1)^2*a(n-2) + 14*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 7^(n+1)*sqrt(3)/(12*Pi*n). - Vaclav Kotesovec, Oct 20 2012
G.f.: hypergeom([1/3, 1/3],[1],-27*x*(x+1)^2/((1-7*x)^2*(1+2*x)))/((1+2*x)^(1/3)*(1-7*x)^(2/3)). - Mark van Hoeij, May 07 2013

Extensions

a(0)=1 prepended by Andrew Howroyd, May 09 2020

A364509 Square array read by ascending antidiagonals: T(n,k) = (2*k)!/k!^2 * ( (2*n*k)! * ((n + 2)*k)! )/( (n*k)! * ((n + 1)*k)!^2 ) for n, k > = 0.

Original entry on oeis.org

1, 1, 4, 1, 6, 36, 1, 16, 90, 400, 1, 50, 784, 1680, 4900, 1, 168, 8910, 48400, 34650, 63504, 1, 588, 113256, 2011100, 3312400, 756756, 853776, 1, 2112, 1528436, 96993024, 503909070, 240374016, 17153136, 11778624, 1, 7722, 21395520, 5056527000, 92279796840, 133954543800, 18116083216
Offset: 0

Views

Author

Peter Bala, Jul 28 2023

Keywords

Comments

Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_k(c, d) = (c_1*k)!*(c_2*k)!* ... *(c_K*k)!/ ( (d_1*k)!*(d_2*k)!* ... *(d_L*k)! ) and ask whether it is integral for all k >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1. Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
Each row sequence of the present table is an integral factorial ratio sequence of height 2.
It is known that both row 0, the squares of the central binomial numbers, and row 1, the de Bruijn numbers, satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that all the row sequences of the table satisfy the same supercongruences [added Oct 11 2024: follows from Meštrović, Section 6, equation 39, since T(n, k) = binomial(2*k, k) * binomial(2*n*k, n*k) * binomial((n+2)*k, k)/binomial((n+1)*k, k)].

Examples

			 Square array begins:
 n\k|  0    1        2           3               4                  5
  - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  0 |  1    4       36         400            4900              63504 ... A002894
  1 |  1    6       90        1680           34650             756756 ... A006480
  2 |  1   16      784       48400         3312400          240374016 ... A364510
  3 |  1   50     8910     2011100       503909070       133954543800 ... A364511
  4 |  1  168   113256    96993024     92279796840     93172920645168 ...
  5 |  1  588  1528436  5056527000  18592935952500  72567511917065088 ...
		

Crossrefs

A002894 (row 0), A006480 (row 1), A364510 (row 3), A364511 (row 4).

Programs

  • Maple
     # display as a square array
    T(n,k) := (2*k)!/k!^2 * ( (2*n*k)! * ((n + 2)*k)! )/( (n*k)! * ((n + 1)*k)!^2 ):
    seq( print(seq(T(n,k), k = 0..10)), n = 0..10):
    # display as a sequence
    seq( seq(T(n-k,k), k = 0..n), n = 0..10);
  • PARI
    T(n,k) = (2*k)!/k!^2 * ( (2*n*k)! * ((n + 2)*k)! )/( (n*k)! * ((n + 1)*k)!^2 ) \\ Winston de Greef, Oct 05 2023

Formula

T(n,k) = Sum_{i = -k..k} (-1)^i * binomial(2*k, k+i)^2 * binomial(2*n*k, n*k+i) (shows that the table entries are integers).
For n >= 1, T(n,k) = (-1)^k * binomial(2*n*k, (n+1)*k)^2 * hypergeom([-2*k, -2*k, -(n+1)*k], [1, 1 + (n-1)*k], 1) = (2*k)!/k!^2 * ( (2*n*k)! * ((n + 2)*k)! )/( (n*k)! * ((n + 1)*k)!^2 ) by Dixon's 3F2 summation theorem.
T(n,k) = (-1)^(n*k) * [x^((n+1)*k)] ( (1 - x)^(2*(n+1)*k) * Legendre_P(2*k, (1 + x)/(1 - x)) ). - Peter Bala, Aug 14 2023

A022916 Multinomial coefficient n!/([n/3]![(n+1)/3]![(n+2)/3]!).

Original entry on oeis.org

1, 1, 2, 6, 12, 30, 90, 210, 560, 1680, 4200, 11550, 34650, 90090, 252252, 756756, 2018016, 5717712, 17153136, 46558512, 133024320, 399072960, 1097450640, 3155170590, 9465511770, 26293088250, 75957810500, 227873431500, 638045608200, 1850332263780, 5550996791340
Offset: 0

Views

Author

Clark Kimberling, Jun 14 1998

Keywords

Comments

Number of permutation patterns modulo 3. This matches the multinomial formula. - Olivier Gérard, Feb 25 2011
Also the number of permutations of n elements where p(k-3) < p(k) for all k. - Joerg Arndt, Jul 23 2011
Also the number of n-step walks on cubic lattice starting at (0,0,0), ending at (floor(n/3), floor((n+1)/3), floor((n+2)/3)), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), and (1,0,0). - Alois P. Heinz, Oct 11 2019

Examples

			Starting from n=4, several permutations have the same pattern. Both (3,1,4,2) and (3,4,1,2) have pattern (0, 1, 1, 2) modulo 3.
		

Crossrefs

A006480(n) = a(3*n).
Cf. A001405 (permutation patterns mod 2).
Cf. A022917 (permutation patterns mod 4).

Programs

  • Maple
    a:= n-> combinat[multinomial](n, floor((n+i)/3)$i=0..2):
    seq(a(n), n=0..24);  # Alois P. Heinz, Oct 11 2019
  • Mathematica
    Table[ n!/(Quotient[n, 3]!*Quotient[n + 1, 3]!*Quotient[n + 2, 3]!), {n, 0, 30}]
    Table[n!/Times@@(Floor/@((n+{0,1,2})/3)!),{n,0,30}] (* Harvey P. Dale, Jul 13 2012 *)
    Table[Multinomial[Floor[n/3], Floor[(n+1)/3], Floor[(n+2)/3]], {n, 0, 30}] (* Jean-François Alcover, Jun 24 2015 *)
  • PARI
    a(n)=n!/((n\3)!*((n+1)\3)!*((n+2)\3)!)
    
  • PARI
    {a(n)= if(n<0, 0, n!/(n\3)!/((n+1)\3)!/((n+2)\3)!)} /* Michael Somos, Jun 20 2007 */

Formula

Recurrence: (n+1)*(n+2)*(3*n+1)*a(n) = 3*(3*n^2 + 3*n + 2)*a(n-1) + 27*(n-1)*(n+2)*a(n-2) + 27*(n-2)*(n-1)*(3*n+4)*a(n-3). - Vaclav Kotesovec, Feb 26 2014
a(n) ~ 3^(n+3/2) / (2*Pi*n). - Vaclav Kotesovec, Feb 26 2014

Extensions

Corrected by Michael Somos, Jun 20 2007

A050984 de Bruijn's S(5,n) = Sum_{k = 0..2*n} (-1)^(n+k)*binomial(2*n, k)^5.

Original entry on oeis.org

1, 30, 5730, 1696800, 613591650, 248832363780, 108702332138400, 50030418256790400, 23933662070438513250, 11795304320307625903500, 5952113838155498195161980, 3061813957188788125283450400, 1600318610176809076206888362400, 847745162264320796366122559544000
Offset: 0

Views

Author

Keywords

Comments

Generally (de Bruijn, 1958), S(s,n) is asymptotic to (2*cos(Pi/(2*s)))^(2*n*s+s-1)*2^(2-s)*(Pi*n)^((1-s)/2)*s^(-1/2). - Vaclav Kotesovec, Jul 09 2013
Andrews (1988) on page 162 states "If, however, we resort to the theory of hypergeometric series, we find that, for example, S(5,n) = - 5F_4[-2n,-2n,-2n,-2n,-2n 1,1,1,1 ; 1]". - _Michael Somos, Jul 24 2013

Examples

			1 + 30*x + 5730*x^2 + 1696800*x^3 + 613591650*x^4 + ...
		

References

  • G. E. Andrews "Application of SCRATCHPAD to problems in special functions and combinatorics" Trends in Computer Algebra, R. Janssen, ed., Springer Lecture Notes in Comp.Sci., No. 296, pp. 159-166 (1988)
  • N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland Publishing Co., 1958. See chapters 4 and 6.

Crossrefs

Programs

  • Mathematica
    Sum[ (-1)^(k+n)Binomial[ 2n, k ]^5, {k, 0, 2n} ]
    a[ n_] := If[ n < 0, 0, (-1)^n HypergeometricPFQ[-2 n {1, 1, 1, 1, 1}, {1, 1, 1, 1}, 1]] (* Michael Somos, Jul 24 2013 *)
  • PARI
    a(n)=sum(k=0,2*n,(-1)^(k+n)*binomial(2*n,k)^5) \\ Charles R Greathouse IV, Dec 21 2011

Formula

E.g.f.: Sum(n>=0,I^n*x^n/n!^5) * Sum(n>=0,(-I)^n*x^n/n!^5) = Sum(n>=0,a(n)*x^(2*n)/n!^5) where I^2=-1. - Paul D. Hanna, Dec 21 2011
a(n) ~ (5+sqrt(5))^(5*n+2)/(sqrt(5)*Pi^2*n^2*2^(5*(n+1))). - Vaclav Kotesovec, Jul 09 2013
Recurrence: n^4*(2*n - 1)^2*(220*n^3 - 858*n^2 + 1119*n - 488)*a(n) = 5*(110000*n^9 - 759000*n^8 + 2252400*n^7 - 3766690*n^6 + 3908325*n^5 - 2609510*n^4 + 1122418*n^3 - 300699*n^2 + 45738*n - 3024)*a(n-1) - 5*(2*n - 3)^2*(5*n - 8)*(5*n - 7)*(5*n - 6)*(5*n - 4)*(220*n^3 - 198*n^2 + 63*n - 7)*a(n-2). - Vaclav Kotesovec, Sep 27 2016
For n >= 1, a(n) = 2 * Sum_{k = 0..2*n-1} (-1)^(n+k) * binomial(2*n, k)^4 * binomial(2*n-1, k) = (1/n) * Sum_{k = 0..2*n} (-1)^(n+k) * k * binomial(2*n, k)^5. - Peter Bala, Oct 31 2024

A060538 Square array read by antidiagonals of number of ways of dividing n*k labeled items into n labeled boxes with k items in each box.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 20, 90, 24, 1, 70, 1680, 2520, 120, 1, 252, 34650, 369600, 113400, 720, 1, 924, 756756, 63063000, 168168000, 7484400, 5040, 1, 3432, 17153136, 11732745024, 305540235000, 137225088000, 681080400, 40320, 1, 12870
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Examples

			       1        1        1        1
       2        6       20       70
       6       90     1680    34650
      24     2520   369600 63063000
		

Crossrefs

Subtable of A187783.
Rows include A000012, A000984, A006480, A008977, A008978 etc.
Columns include A000142, A000680, A014606, A014608, A014609 etc.
Main diagonal is A034841.

Programs

  • PARI
    T(n,k)=(n*k)!/k!^n;
    for(n=1, 6, for(k=1, 6, print1(T(n,k), ", ")); print) \\ Harry J. Smith, Jul 06 2009

Formula

T(n, k) = (nk)!/k!^n = T(n-1, k)*binomial(nk, k) = T(n-1, k)*A060539(n, k) = A060540(n, k)*A000142(k).

A071550 a(n) = (8n)!/n!^8.

Original entry on oeis.org

1, 40320, 81729648000, 369398958888960000, 2390461829733887910000000, 18975581770994682860770223800320, 171889289584866507880743491472699801600
Offset: 0

Views

Author

Benoit Cloitre, May 30 2002

Keywords

Crossrefs

Sequences (k*n)!/n!^k: A000984 (k = 2), A006480 (k = 3), A008977 (k = 4), A008978 (k = 5), A008979 (k = 6), A071549 (k = 7), A071551 (k = 9), A071552 (k = 10).

Programs

  • Magma
    [Factorial(8*n)/Factorial(n)^8: n in [0..20]]; // Vincenzo Librandi, Aug 13 2014
  • Mathematica
    Table[(8 n)!/(n)!^8, {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2014 *)

A071551 a(n) = (9n)!/n!^9.

Original entry on oeis.org

1, 362880, 12504636144000, 1080491954750208000000, 140810154080474667338550000000, 23183587808948692737291767860055162880, 4439413043841128802009762476941510771390464000
Offset: 0

Views

Author

Benoit Cloitre, May 30 2002

Keywords

Crossrefs

Sequences (k*n)!/n!^k: A000984 (k = 2), A006480 (k = 3), A008977 (k = 4), A008978 (k = 5), A008979 (k = 6), A071549 (k = 7), A071550 (k = 8), A071552 (k = 10).

Programs

A071552 a(n) = (10n)!/n!^10.

Original entry on oeis.org

1, 3628800, 2375880867360000, 4386797336285844480000000, 12868639981414579848070084500000000, 49120458506088132224064306071170476903628800
Offset: 0

Views

Author

Benoit Cloitre, May 30 2002

Keywords

Crossrefs

Sequences (k*n)!/n!^k: A000984 (k = 2), A006480 (k = 3), A008977 (k = 4), A008978 (k = 5), A008979 (k = 6), A071549 (k = 7), A071550 (k = 8), A071551 (k = 9).

Programs

  • Magma
    [Factorial(10*n)/Factorial(n)^10: n in [0..20]]; // Vincenzo Librandi, Aug 13 2014
  • Mathematica
    Table[(10n)!/(n)!^10, {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2014 *)

A364506 Square array read by ascending antidiagonals: T(n,k) = (2*k)!/k! * ( (2*n*k)! * ((2*n+1)*k)! )/( (n*k)!^2 * ((n+1)*k)!^2 ).

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 40, 90, 20, 1, 350, 5880, 1680, 70, 1, 3528, 594594, 1101100, 34650, 252, 1, 38808, 75088728, 1299170600, 229265400, 756756, 924, 1, 453024, 10861066216, 2066315135040, 3164045050530, 50678855040, 17153136, 3432, 1, 5521230, 1721929279200, 3943172216808000
Offset: 0

Views

Author

Peter Bala, Jul 27 2023

Keywords

Comments

Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_k(c, d) = (c_1*k)!*(c_2*k)!* ... *(c_K*k)!/ ( (d_1*k)!*(d_2*k)!* ... *(d_L*k)! ) and ask whether it is integral for all k >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1. Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
Each row sequence of the present table is an integral factorial ratio sequence of height 2.
It is known that both row 0, the central binomial numbers, and row 1, the de Bruijn numbers, satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that all the row sequences of the table satisfy the same supercongruences.

Examples

			 Square array begins:
 n\k|  0     1         2              3                  4                 5
  - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  0 |  1     2         6             20                 70               252 ...
  1 |  1     6        90           1680              34650            756756 ...
  2 |  1    40      5880        1101100          229265400       50678855040 ...
  3 |  1   350    594594     1299170600      3164045050530  8188909171581600 ...
  4 |  1  3528  75088728  2066315135040  63464046079757400  ...
  5 |  1 38808  ...
		

Crossrefs

A000984 (row 0), A006480 (row 1), A364507 (row 2), A364508 (row 3). Cf. A364303, A364509, A365025.

Programs

  • Maple
    # display as a square array
    T(n,k) := (2*k)!/k! * ( (2*n*k)! * ((2*n+1)*k)! )/((n*k)!^2 * ((n+1)*k)!^2):
    seq( print(seq(T(n,k), k = 0..10)), n = 0..10);
    # display as a sequence
    seq( seq(T(n-k,k), k = 0..n), n = 0..10);

Formula

T(n,k) = Sum_{i = -k..k} (-1)^i * binomial(2*k, k+i) * binomial(2*n*k, n*k+i)^2 (shows that the table entries are integers).
For n >= 1, T(n,k) = (-1)^k * binomial(2*n*k, (n+1)*k)^2 * hypergeom([-2*k, -(n+1)*k, -(n+1)*k], [1 + (n-1)*k, 1 + (n-1)*k], 1) = (2*k)!/k! * ( (2*n*k)! * ((2*n+1)*k)! )/( (n*k)!^2 * ((n+1)*k)!^2 ) by Dixon's 3F2 summation theorem.
T(n,k) = (-1)^k * [x^((n + 1)*k)] ( (1 - x)^(2*(n+1)*k) * Legendre_P(2*n*k, (1 + x)/(1 - x)) ). - Peter Bala, Aug 15 2023

A089659 a(n) = S1(n,2), where S1(n, t) = Sum_{k=0..n} (k^t * Sum_{j=0..k} binomial(n,j)).

Original entry on oeis.org

0, 2, 19, 104, 440, 1600, 5264, 16128, 46848, 130560, 352000, 923648, 2369536, 5963776, 14766080, 36044800, 86900736, 207224832, 489357312, 1145569280, 2660761600, 6136266752, 14060355584, 32027705344, 72561459200, 163577856000, 367068708864, 820204535808
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2004

Keywords

Crossrefs

Sequences of S1(n, t): A001792 (t=0), A089658 (t=1), this sequence (t=2), A089660 (t=3), A089661 (t=4), A089662 (t=5), A089663 (t=6).

Programs

  • Magma
    I:=[0,2,19,104]; [n le 4 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..41]]; // Vincenzo Librandi, Jun 22 2016
    
  • Mathematica
    LinearRecurrence[{8,-24,32,-16}, {0,2,19,104}, 40] (* Vincenzo Librandi, Jun 22 2016 *)
  • SageMath
    [2^(n-3)*n*(7*n^2 + 12*n + 5)/3 for n in (0..40)] # G. C. Greubel, May 24 2022

Formula

a(n) = 2^(n-3)*n*(7*n^2 + 12*n + 5)/3. (see Wang and Zhang p. 333)
From Chai Wah Wu, Jun 21 2016: (Start)
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n > 3.
G.f.: x*(2 + 3*x)/(1 - 2*x)^4. (End)
E.g.f.: x*(12 + 33*x + 14*x^2)*exp(2*x)/6. - Ilya Gutkovskiy, Jun 21 2016
Previous Showing 41-50 of 106 results. Next