cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 72 results. Next

A319918 Expansion of Product_{k>=1} 1/(1 - x^k)^(2^k-1).

Original entry on oeis.org

1, 1, 4, 11, 32, 84, 230, 597, 1567, 4020, 10286, 25994, 65387, 163065, 404617, 997687, 2448220, 5977334, 14530835, 35173496, 84814982, 203760809, 487845377, 1164191563, 2769721073, 6570218773, 15542642042, 36671354125, 86306246887, 202637312099, 474684979292, 1109539437382
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 01 2018

Keywords

Comments

Convolution of A010815 and A034899.
Euler transform of A000225.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
           d*(2^d-1), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Aug 13 2021
  • Mathematica
    nmax = 31; CoefficientList[Series[Product[1/(1 - x^k)^(2^k - 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 31; CoefficientList[Series[Exp[Sum[x^k/(k (1 - x^k) (1 - 2 x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (2^d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]

Formula

G.f.: exp(Sum_{k>=1} x^k/(k*(1 - x^k)*(1 - 2*x^k))).
a(n) ~ A247003^2 * exp(2*sqrt(n) - 1/2) * 2^(n-1) / (A065446 * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Sep 15 2021

A059474 Triangle read by rows: T(n,k) is coefficient of z^n*w^k in 1/(1 - 2*z - 2*w + 2*z*w) read by rows in order 00, 10, 01, 20, 11, 02, ...

Original entry on oeis.org

1, 2, 2, 4, 6, 4, 8, 16, 16, 8, 16, 40, 52, 40, 16, 32, 96, 152, 152, 96, 32, 64, 224, 416, 504, 416, 224, 64, 128, 512, 1088, 1536, 1536, 1088, 512, 128, 256, 1152, 2752, 4416, 5136, 4416, 2752, 1152, 256, 512, 2560, 6784, 12160, 16032, 16032, 12160, 6784, 2560, 512
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2001; revised Jun 12 2005

Keywords

Comments

Pascal-like triangle: start with 1 at top; every subsequent entry is the sum of everything above you, plus 1.

Examples

			Triangle begins as:
   n\k [0]  [1]  [2]  [3]  [4]  [5]  [6] ...
  [0]   1;
  [1]   2,   2;
  [2]   4,   6,   4;
  [3]   8,  16,  16,   8;
  [4]  16,  40,  52,  40,  16;
  [5]  32,  96, 152, 152,  96,  32;
  [6]  64, 224, 416, 504, 416, 224,  64;
       ...
		

Crossrefs

See A059576 for a similar triangle.

Programs

  • Magma
    A059474:= func< n,k | (&+[(-1)^j*2^(n-j)*Binomial(n-k,j)*Binomial(n-j,n-k): j in [0..n-k]]) >;
    [A059474(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 21 2023
    
  • Maple
    read transforms; SERIES2(1/(1-2*z-2*w+2*z*w),x,y,12): SERIES2TOLIST(%,x,y,12);
    # Alternative
    T := (n, k) -> 2^n*binomial(n, k)*hypergeom([-k, -n + k], [-n], 1/2):
    for n from 0 to 10 do seq(simplify(T(n, k)), k = 0 .. n) end do; # Peter Luschny, Nov 26 2021
  • Mathematica
    Table[(-1)^k*2^n*JacobiP[k, -n-1,0,0], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 04 2017; May 21 2023 *)
  • SageMath
    def A059474(n,k): return 2^n*binomial(n, k)*simplify(hypergeometric([-k, k-n], [-n], 1/2))
    flatten([[A059474(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 21 2023

Formula

G.f.: 1/(1 - 2*z - 2*w + 2*z*w).
T(n, k) = Sum_{j=0..n} (-1)^j*2^(n + k - j)*C(n, j)*C(n + k - j, n).
T(n, 0) = T(n, n) = A000079(n).
T(2*n, n) = A084773(n).
T(n, k) = 2^n*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2). - Peter Luschny, Nov 26 2021
From G. C. Greubel, May 21 2023: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = A007070(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A077957(n).
T(n, 1) = A057711(n+1) = 2*A001792(n) - [n=0].
T(n, 2) = 4*A049611(n-1). (End)

A116414 Riordan array (1/((1-x)(1-3x)),x/((1-x)(1-3x))).

Original entry on oeis.org

1, 4, 1, 13, 8, 1, 40, 42, 12, 1, 121, 184, 87, 16, 1, 364, 731, 496, 148, 20, 1, 1093, 2736, 2454, 1040, 225, 24, 1, 3280, 9844, 11064, 6170, 1880, 318, 28, 1, 9841, 34448, 46738, 32624, 13015, 3080, 427, 32, 1, 29524, 118101, 188208, 158724, 79044, 24381, 4704
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Row sums are A116415. Diagonal sums are A007070. First column is A003462(n+1). Product of A007318 and A116412.
Subtriangle of triangle given by (0, 4, -3/4, 3/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 18 2012

Examples

			Triangle begins
    1;
    4,   1;
   13,   8,   1;
   40,  42,  12,   1;
  121, 184,  87,  16,  1;
  364, 731, 496, 148, 20, 1;
Triangle T(n,k), 0 <= k <= n, given by (0, 4, -3/4, 3/4, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
  1;
  0,   1;
  0,   4,   1;
  0,  13,   8,   1;
  0,  40,  42,  12,   1;
  0, 121, 184,  87,  16,  1;
  0, 364, 731, 496, 148, 20, 1;
  ... - _Philippe Deléham_, Jan 18 2012
		

Crossrefs

Programs

  • Mathematica
    With[{n = 10}, DeleteCases[#, 0] & /@ Rest@ CoefficientList[Series[(1 - 4 x + 3 x^2)/(1 - 4 x + 3 x^2 - x y), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)

Formula

Riordan array (1/(1-4x+3x^2), x/(1-4x+3x^2)); number triangle T(n,k) = Sum_{j=0..n} binomial(n-j,k)*binomial(k+j,j)*3^j.
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(2,1) = 4, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Oct 31 2013
G.f.: (1-4*x+3*x^2)/(1-4*x+3*x^2-x*y). - Philippe Deléham, Oct 31 2013
From Peter Bala, Oct 07 2019: (Start)
O.g.f.: 1/(1 - 4*x + 3*x^2 - x*y) = 1 + (4 + y)*x + (13 + 8*y + y^2)*x^2 + ....
Recurrence for row polynomials: R(n,y) = (4 + y)*R(n-1,y) - 3*R(n-2,y) with R(0,y) = 1 and R(1,y) = 4 + y.
The row reverse polynomial y^n*R(n,1/y) is equal to the numerator polynomial of the finite continued fraction 1 + y/(1 + 3*y/(1 + ... + y/(1 + 3*y/(1)))) (with 2*n partial numerators). Cf. A110441. (End)

A124029 Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n triangular matrix: 4 on the main diagonal, -1 of the two adjacent subdiagonals, 0 otherwise.

Original entry on oeis.org

1, 4, -1, 15, -8, 1, 56, -46, 12, -1, 209, -232, 93, -16, 1, 780, -1091, 592, -156, 20, -1, 2911, -4912, 3366, -1200, 235, -24, 1, 10864, -21468, 17784, -8010, 2120, -330, 28, -1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, 151316, -386373, 430992, -275724, 111524, -29589, 5152, -568, 36, -1
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Nov 01 2006

Keywords

Comments

The matrices are {4} if n=1, {{4,-1},{-1,4}} if n=2, {{4,-1,0},{-1,4,-1},{0,-1,4}} if n=3 etc. The empty matrix at n=0 has an empty product (determinant) with assigned value =1.
Riordan array (1/(1-4*x+x^2), -x/(1-4*x+x^2)). - Philippe Deléham, Mar 04 2016

Examples

			Triangle begins as:
      1;
      4,     -1;
     15,     -8,     1;
     56,    -46,    12,    -1;
    209,   -232,    93,   -16,    1;
    780,  -1091,   592,  -156,   20,   -1;
   2911,  -4912,  3366, -1200,  235,  -24,  1;
  10864, -21468, 17784, -8010, 2120, -330, 28, -1;
		

Crossrefs

Programs

  • Magma
    m:=12;
    R:=PowerSeriesRing(Integers(), m+2);
    A124029:= func< n,k | Coefficient(R!( Evaluate(ChebyshevU(n+1), (4-x)/2) ), k) >;
    [A124029(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
    
  • Maple
    A123966x := proc(n,x)
        local A,r,c ;
        A := Matrix(1..n,1..n) ;
        for r from 1 to n do
        for c from 1 to n do
                A[r,c] :=0 ;
            if r = c then
                A[r,c] := A[r,c]+4 ;
            elif abs(r-c)= 1 then
                A[r,c] :=  A[r,c]-1 ;
            end if;
        end do:
        end do:
        (-1)^n*LinearAlgebra[CharacteristicPolynomial](A,x) ;
    end proc;
    A123966 := proc(n,k)
        coeftayl( A123966x(n,x),x=0,k) ;
    end proc:
    seq(seq(A123966(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 06 2011
  • Mathematica
    (* Matrix version*)
    k = 4;
    T[n_, m_, d_]:= If[n==m, k, If[n==m-1 || n==m+1, -1, 0]];
    M[d_]:= Table[T[n, m, d], {n,d}, {m,d}];
    Table[M[d], {d,10}]
    Table[Det[M[d]], {d,10}]
    Table[Det[M[d] - x*IdentityMatrix[d]], {d,10}]
    Join[{M[1]}, Table[CoefficientList[Det[M[ d] - x*IdentityMatrix[d]], x], {d,10}]]//Flatten
    (* Recursive Polynomial form*)
    p[0, x]= 1; p[1, x]= (4-x); p[k_, x_]:= p[k, x]= (4-x)*p[k-1, x] - p[k -2, x];
    Table[CoefficientList[p[n, x], x], {n, 0, 10}]//Flatten
    (* Additional program *)
    Table[CoefficientList[ChebyshevU[n, (4-x)/2], x], {n,0,12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
  • SageMath
    def A124029(n,k): return ( chebyshev_U(n, (4-x)/2) ).series(x, n+2).list()[k]
    flatten([[A124029(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023

Formula

T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (4-x)*p(n-1, x) - p(n-2, x), p(0, x) = 1, p(1, x) = 4-x.
From G. C. Greubel, Aug 20 2023: (Start)
T(n, k) = [x^k]( ChebyshevU(n, (4-x)/2) ).
Sum_{k=0..n} T(n, k) = A001906(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = A004254(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A007070(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000302(n).
T(n, n) = (-1)^n.
T(n, n-1) = 4*A181983(n), n >= 1.
T(n, n-2) = (-1)^n*A139278(n-1), n >= 2.
T(n, 0) = A001353(n+1). (End)

A153593 a(n) = ((9 + sqrt(2))^n - (9 - sqrt(2))^n)/(2*sqrt(2)).

Original entry on oeis.org

1, 18, 245, 2988, 34429, 383670, 4186169, 45041112, 480032665, 5082340122, 53559541661, 562566880260, 5895000053461, 61667217421758, 644304909368225, 6725778192309168, 70163919621475249, 731614075994130210
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008

Keywords

Comments

Preceded by zero, this is the eighth binomial transform of the Pell sequence A000129. - Sergio Falcon, Sep 21 2009; edited by Klaus Brockhaus, Oct 11 2009
Eighth binomial transform of A048697.
First differences are in A164600.
lim_{n -> infinity} a(n)/a(n-1) = 9 + sqrt(2) = 10.4142135623....

Crossrefs

Cf. A000129 (Pell numbers), A007070, A081185, A081184, A081183, A081182, A081180, A081179. - Sergio Falcon, Sep 21 2009
Cf. A002193 (decimal expansion of sqrt(2)), A048697, A164600.

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((9+r)^n-(9-r)^n)/(2*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 31 2008
  • Mathematica
    Join[{a=1,b=18},Table[c=18*b-79*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
    LinearRecurrence[{18,-79},{1,18},25] (* G. C. Greubel, Aug 22 2016 *)

Formula

a(n) = 18*a(n-1) - 79*a(n-2) for n>1; a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
G.f.: x/(1 - 18*x + 79*x^2). - Klaus Brockhaus, Dec 31 2008, corrected Oct 11 2009
a(n) = Sum[Binomial[n - 1 - i, i] (-1)^i * 18^(n - 1 - 2 i) * 79^i, {i, 0, Floor[(n - 1)/2]}]. - Sergio Falcon, Sep 21 2009
E.g.f.: exp(9*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017

Extensions

Extended beyond a(7) by Klaus Brockhaus, Dec 31 2008
Edited by Klaus Brockhaus, Oct 11 2009

A163608 a(n) = ((5 + 2*sqrt(2))*(2 + sqrt(2))^n + (5 - 2*sqrt(2))*(2 - sqrt(2))^n)/2.

Original entry on oeis.org

5, 14, 46, 156, 532, 1816, 6200, 21168, 72272, 246752, 842464, 2876352, 9820480, 33529216, 114475904, 390845184, 1334428928, 4556025344, 15555243520, 53108923392, 181325206528, 619082979328, 2113681504256, 7216560058368
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009

Keywords

Comments

Binomial transform of A163607. Inverse binomial transform of A163609.

Crossrefs

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((5+2*r)*(2+r)^n+(5-2*r)*(2-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 06 2009
    
  • Mathematica
    LinearRecurrence[{4,-2},{5,14},30] (* Harvey P. Dale, Jan 31 2017 *)
  • PARI
    x='x+O('x^50); Vec((5-6*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Jul 29 2017

Formula

a(n) = 4*a(n-1) - 2*a(n-2) for n > 1; a(0) = 5, a(1) = 14.
G.f.: (5-6*x)/(1-4*x+2*x^2).
a(n) = 5*A007070(n) - 6*A007070(n-1). - R. J. Mathar, Nov 08 2013
E.g.f.: exp(2*x)*( 5*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Jul 29 2017

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 06 2009

A210754 Triangle of coefficients of polynomials v(n,x) jointly generated with A210753; see the Formula section.

Original entry on oeis.org

1, 3, 2, 6, 9, 4, 10, 25, 24, 8, 15, 55, 85, 60, 16, 21, 105, 231, 258, 144, 32, 28, 182, 532, 833, 728, 336, 64, 36, 294, 1092, 2241, 2720, 1952, 768, 128, 45, 450, 2058, 5301, 8361, 8280, 5040, 1728, 256, 55, 660, 3630, 11385, 22363, 28610, 23920
Offset: 1

Views

Author

Clark Kimberling, Mar 25 2012

Keywords

Comments

Column 1: triangular numbers, A000217
Coefficient of v(n,x): 2^(n-1)
Row sums: A035344
Alternating row sums: 1,1,1,1,1,1,1,1,1,...
For a discussion and guide to related arrays, see A208510.
Appears to be the reversed row polynomials of A165241 with the unit diagonal removed. If so, the o.g.f. is [1-(1+y)x]/[1-2(1+y)x+(1+y)x^2] - 1/(1-x) and the triangular matrix here may be formed by adding each column of the matrix of A056242, presented in the example section with the additional zeros, to its subsequent column with the first row ignored. - Tom Copeland, Jan 09 2017

Examples

			First five rows:
1
3....2
6....9....4
10...25...24...8
15...55...85...60...16
First three polynomials v(n,x): 1, 3 + 2x, 6 + 9x +4x^2
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1;
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210753 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210754 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}] (* A007070 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}] (* A035344 *)

Formula

u(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A214996 Power floor-ceiling sequence of 2+sqrt(2).

Original entry on oeis.org

3, 11, 37, 127, 433, 1479, 5049, 17239, 58857, 200951, 686089, 2342455, 7997641, 27305655, 93227337, 318298039, 1086737481, 3710353847, 12667940425, 43251054007, 147668335177, 504171232695, 1721348260425, 5877050576311, 20065505784393, 68507921984951
Offset: 0

Views

Author

Clark Kimberling, Nov 10 2012

Keywords

Comments

See A214992 for a discussion of power floor-ceiling sequence and power floor-ceiling function, p2(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(2), and the limit p2(r) = (11 + 8*sqrt(2))/7.
From Greg Dresden, Jun 02 2020: (Start)
a(n) is the number of ways to tile a 2 X (n+1) strip, with one extra square at the top left corner, using 1 X 1 squares, 2 X 2 squares, and 1 X 2 dominoes (either horizontal or vertical). This picture shows a(1) = 11.
|| || | | ||_ || || || | | | | || ||
||| | | ||| | || || | |_| ||| ||| || | |__| | | |
||| |_| ||| ||| ||| ||| |_| |_| ||| |_| |||
(End)

Examples

			a(0) = floor(r) = 3, where r = 2+sqrt(2).
a(1) = ceiling(3*r) = 11; a(2) = floor(11*r) = 37.
		

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((3+2*x-2*x^2)/(1-3*x-2*x^2+2*x^3))) // G. C. Greubel, Feb 02 2018
  • Mathematica
    x = 2 + Sqrt[2]; z = 30; (* z = # terms in sequences *)
    z1 = 100; (* z1 = # digits in approximations *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    Table[p1[n], {n, 0, z}]  (* A007052 *)
    Table[p2[n], {n, 0, z}]  (* A214996 *)
    Table[p3[n], {n, 0, z}]  (* A214997 *)
    Table[p4[n], {n, 0, z}]  (* A007070 *)
  • PARI
    Vec((3 + 2*x - 2*x^2) / ((1 + x)*(1 - 4*x + 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
    

Formula

a(n) = ceiling(x*a(n-1)) if n is odd, a(n) = floor(x*a(n-1)) if n is even, where x = 2+sqrt(2) and a(0) = floor(x).
a(n) = 3*a(n-1) + 2*a(n-2) - 2*a(n-3).
G.f.: (3 + 2*x - 2*x^2)/(1 - 3*x - 2*x^2 + 2*x^3).
a(n) = (1/7)*((-1)^(1+n) + (11-8*sqrt(2))*(2-sqrt(2))^n + (2+sqrt(2))^n*(11+8*sqrt(2))). - Colin Barker, Nov 13 2017

A214997 Power ceiling-floor sequence of 2+sqrt(2).

Original entry on oeis.org

4, 13, 45, 153, 523, 1785, 6095, 20809, 71047, 242569, 828183, 2827593, 9654007, 32960841, 112535351, 384219721, 1311808183, 4478793289, 15291556791, 52208640585, 178251448759, 608588513865, 2077851157943, 7094227604041, 24221208100279, 82696377193033
Offset: 0

Views

Author

Clark Kimberling, Nov 10 2012

Keywords

Comments

See A214992 for a discussion of power ceiling-floor sequence and power ceiling-floor function, p3(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(2), and the limit p3(r) = 3.8478612632206289...
a(n) is the number of words over {0,1,2,3} of length n+1 that avoid 23, 32, and 33. As an example, a(2)=45 corresponds to the 45 such words of length 3; these are all 64 words except for the 19 prohibited cases which are 320, 321, 322, 323, 230, 231, 232, 233, 330, 331, 332, 333, 023, 123, 223, 032, 132, 033, 133. - Greg Dresden and Mina BH Arsanious, Aug 09 2023
Let M denote the 4 X 4 matrix = [[1,1,1,1], [1,1,1,1], [1,1,1,0], [1,1,0,0]] and A(n) = the column vector (p(n),q(n),r(n),s(n)) = M^n * A(0), where A(0) = (1,1,1,1), then a(n) = p(n)+q(n)+r(n)+s(n) = p(n+1). - Mina BH Arsanious, Jan 18 2025
Sum_{k=0..n} a(k) = (r(n-2)-3)/2 where r(n) is defined in previous comment. - Mina BH Arsanious, May 21 2025

Examples

			a(0) = ceiling(r) = 4, where r = 2+sqrt(2);
a(1) = floor(4*r) = 13; a(2) = ceiling(13*r) = 45.
		

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((4 +x-2*x^2)/(1-3*x-2*x^2+2*x^3))); // G. C. Greubel, Feb 01 2018
  • Mathematica
    (See A214996.)
    CoefficientList[Series[(4+x-2*x^2)/(1-3*x-2*x^2+2*x^3), {x,0,50}], x] (* G. C. Greubel, Feb 01 2018 *)
  • PARI
    Vec((4 + x - 2*x^2) / ((1 + x)*(1 - 4*x + 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
    

Formula

a(n) = floor(x*a(n-1)) if n is odd, a(n) = ceiling(x*a(n-1)) if n is even, where x = 2+sqrt(2) and a(0) = ceiling(x).
a(n) = 3*a(n-1) + 2*a(n-2) - 2*a(n-3).
G.f.: (4 + x - 2*x^2)/(1 - 3*x - 2*x^2 + 2*x^3).
a(n) = (1/14)*(2*(-1)^n + (27-19*sqrt(2))*(2-sqrt(2))^n + (2+sqrt(2))^n*(27+19*sqrt(2))). - Colin Barker, Nov 13 2017

A342133 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of g.f. 1/(1 - 2*k*x + k*x^2).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 6, 14, 4, 0, 1, 8, 33, 48, 5, 0, 1, 10, 60, 180, 164, 6, 0, 1, 12, 95, 448, 981, 560, 7, 0, 1, 14, 138, 900, 3344, 5346, 1912, 8, 0, 1, 16, 189, 1584, 8525, 24960, 29133, 6528, 9, 0, 1, 18, 248, 2548, 18180, 80750, 186304, 158760, 22288, 10, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2021

Keywords

Examples

			Square array begins:
  1, 1,   1,    1,     1,     1, ...
  0, 2,   4,    6,     8,    10, ...
  0, 3,  14,   33,    60,    95, ...
  0, 4,  48,  180,   448,   900, ...
  0, 5, 164,  981,  3344,  8525, ...
  0, 6, 560, 5346, 24960, 80750, ...
		

Crossrefs

Columns 0..5 give A000007, A000027(n+1), A007070, A138395, A099156(n+1), A190987(n+1).
Rows 0..2 give A000012, A005843, A033991.
Main diagonal gives (-1) * A109520(n+1).

Programs

  • Maple
    T:= (n, k)-> (<<0|1>, <-k|2*k>>^(n+1))[1, 2]:
    seq(seq(T(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 01 2021
  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, (2*k)^j] * (-2)^(j - n) * Binomial[j, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    T(n, k) = sum(j=0, n\2, (2*k)^(n-j)*(-2)^(-j)*binomial(n-j, j));
    
  • PARI
    T(n, k) = sum(j=0, n, (2*k)^j*(-2)^(j-n)*binomial(j, n-j));
    
  • PARI
    T(n, k) = round(sqrt(k)^n*polchebyshev(n, 2, sqrt(k)));

Formula

T(0,k) = 1, T(1,k) = 2*k and T(n,k) = k*(2*T(n-1,k) - T(n-2,k)) for n > 1.
T(n,k) = Sum_{j=0..floor(n/2)} (2*k)^(n-j) * (-1/2)^j * binomial(n-j,j) = Sum_{j=0..n} (2*k)^j * (-1/2)^(n-j) * binomial(j,n-j).
T(n,k) = sqrt(k)^n * U(n, sqrt(k)) where U(n, x) is a Chebyshev polynomial of the second kind.
Previous Showing 31-40 of 72 results. Next