A319918
Expansion of Product_{k>=1} 1/(1 - x^k)^(2^k-1).
Original entry on oeis.org
1, 1, 4, 11, 32, 84, 230, 597, 1567, 4020, 10286, 25994, 65387, 163065, 404617, 997687, 2448220, 5977334, 14530835, 35173496, 84814982, 203760809, 487845377, 1164191563, 2769721073, 6570218773, 15542642042, 36671354125, 86306246887, 202637312099, 474684979292, 1109539437382
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
d*(2^d-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Aug 13 2021
-
nmax = 31; CoefficientList[Series[Product[1/(1 - x^k)^(2^k - 1), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 31; CoefficientList[Series[Exp[Sum[x^k/(k (1 - x^k) (1 - 2 x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (2^d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]
A059474
Triangle read by rows: T(n,k) is coefficient of z^n*w^k in 1/(1 - 2*z - 2*w + 2*z*w) read by rows in order 00, 10, 01, 20, 11, 02, ...
Original entry on oeis.org
1, 2, 2, 4, 6, 4, 8, 16, 16, 8, 16, 40, 52, 40, 16, 32, 96, 152, 152, 96, 32, 64, 224, 416, 504, 416, 224, 64, 128, 512, 1088, 1536, 1536, 1088, 512, 128, 256, 1152, 2752, 4416, 5136, 4416, 2752, 1152, 256, 512, 2560, 6784, 12160, 16032, 16032, 12160, 6784, 2560, 512
Offset: 0
Triangle begins as:
n\k [0] [1] [2] [3] [4] [5] [6] ...
[0] 1;
[1] 2, 2;
[2] 4, 6, 4;
[3] 8, 16, 16, 8;
[4] 16, 40, 52, 40, 16;
[5] 32, 96, 152, 152, 96, 32;
[6] 64, 224, 416, 504, 416, 224, 64;
...
See
A059576 for a similar triangle.
-
A059474:= func< n,k | (&+[(-1)^j*2^(n-j)*Binomial(n-k,j)*Binomial(n-j,n-k): j in [0..n-k]]) >;
[A059474(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 21 2023
-
read transforms; SERIES2(1/(1-2*z-2*w+2*z*w),x,y,12): SERIES2TOLIST(%,x,y,12);
# Alternative
T := (n, k) -> 2^n*binomial(n, k)*hypergeom([-k, -n + k], [-n], 1/2):
for n from 0 to 10 do seq(simplify(T(n, k)), k = 0 .. n) end do; # Peter Luschny, Nov 26 2021
-
Table[(-1)^k*2^n*JacobiP[k, -n-1,0,0], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 04 2017; May 21 2023 *)
-
def A059474(n,k): return 2^n*binomial(n, k)*simplify(hypergeometric([-k, k-n], [-n], 1/2))
flatten([[A059474(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 21 2023
A116414
Riordan array (1/((1-x)(1-3x)),x/((1-x)(1-3x))).
Original entry on oeis.org
1, 4, 1, 13, 8, 1, 40, 42, 12, 1, 121, 184, 87, 16, 1, 364, 731, 496, 148, 20, 1, 1093, 2736, 2454, 1040, 225, 24, 1, 3280, 9844, 11064, 6170, 1880, 318, 28, 1, 9841, 34448, 46738, 32624, 13015, 3080, 427, 32, 1, 29524, 118101, 188208, 158724, 79044, 24381, 4704
Offset: 0
Triangle begins
1;
4, 1;
13, 8, 1;
40, 42, 12, 1;
121, 184, 87, 16, 1;
364, 731, 496, 148, 20, 1;
Triangle T(n,k), 0 <= k <= n, given by (0, 4, -3/4, 3/4, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
1;
0, 1;
0, 4, 1;
0, 13, 8, 1;
0, 40, 42, 12, 1;
0, 121, 184, 87, 16, 1;
0, 364, 731, 496, 148, 20, 1;
... - _Philippe Deléham_, Jan 18 2012
-
With[{n = 10}, DeleteCases[#, 0] & /@ Rest@ CoefficientList[Series[(1 - 4 x + 3 x^2)/(1 - 4 x + 3 x^2 - x y), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
A124029
Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n triangular matrix: 4 on the main diagonal, -1 of the two adjacent subdiagonals, 0 otherwise.
Original entry on oeis.org
1, 4, -1, 15, -8, 1, 56, -46, 12, -1, 209, -232, 93, -16, 1, 780, -1091, 592, -156, 20, -1, 2911, -4912, 3366, -1200, 235, -24, 1, 10864, -21468, 17784, -8010, 2120, -330, 28, -1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, 151316, -386373, 430992, -275724, 111524, -29589, 5152, -568, 36, -1
Offset: 0
Triangle begins as:
1;
4, -1;
15, -8, 1;
56, -46, 12, -1;
209, -232, 93, -16, 1;
780, -1091, 592, -156, 20, -1;
2911, -4912, 3366, -1200, 235, -24, 1;
10864, -21468, 17784, -8010, 2120, -330, 28, -1;
-
m:=12;
R:=PowerSeriesRing(Integers(), m+2);
A124029:= func< n,k | Coefficient(R!( Evaluate(ChebyshevU(n+1), (4-x)/2) ), k) >;
[A124029(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
-
A123966x := proc(n,x)
local A,r,c ;
A := Matrix(1..n,1..n) ;
for r from 1 to n do
for c from 1 to n do
A[r,c] :=0 ;
if r = c then
A[r,c] := A[r,c]+4 ;
elif abs(r-c)= 1 then
A[r,c] := A[r,c]-1 ;
end if;
end do:
end do:
(-1)^n*LinearAlgebra[CharacteristicPolynomial](A,x) ;
end proc;
A123966 := proc(n,k)
coeftayl( A123966x(n,x),x=0,k) ;
end proc:
seq(seq(A123966(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 06 2011
-
(* Matrix version*)
k = 4;
T[n_, m_, d_]:= If[n==m, k, If[n==m-1 || n==m+1, -1, 0]];
M[d_]:= Table[T[n, m, d], {n,d}, {m,d}];
Table[M[d], {d,10}]
Table[Det[M[d]], {d,10}]
Table[Det[M[d] - x*IdentityMatrix[d]], {d,10}]
Join[{M[1]}, Table[CoefficientList[Det[M[ d] - x*IdentityMatrix[d]], x], {d,10}]]//Flatten
(* Recursive Polynomial form*)
p[0, x]= 1; p[1, x]= (4-x); p[k_, x_]:= p[k, x]= (4-x)*p[k-1, x] - p[k -2, x];
Table[CoefficientList[p[n, x], x], {n, 0, 10}]//Flatten
(* Additional program *)
Table[CoefficientList[ChebyshevU[n, (4-x)/2], x], {n,0,12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
-
def A124029(n,k): return ( chebyshev_U(n, (4-x)/2) ).series(x, n+2).list()[k]
flatten([[A124029(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023
A153593
a(n) = ((9 + sqrt(2))^n - (9 - sqrt(2))^n)/(2*sqrt(2)).
Original entry on oeis.org
1, 18, 245, 2988, 34429, 383670, 4186169, 45041112, 480032665, 5082340122, 53559541661, 562566880260, 5895000053461, 61667217421758, 644304909368225, 6725778192309168, 70163919621475249, 731614075994130210
Offset: 1
Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((9+r)^n-(9-r)^n)/(2*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 31 2008
-
Join[{a=1,b=18},Table[c=18*b-79*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
LinearRecurrence[{18,-79},{1,18},25] (* G. C. Greubel, Aug 22 2016 *)
A163608
a(n) = ((5 + 2*sqrt(2))*(2 + sqrt(2))^n + (5 - 2*sqrt(2))*(2 - sqrt(2))^n)/2.
Original entry on oeis.org
5, 14, 46, 156, 532, 1816, 6200, 21168, 72272, 246752, 842464, 2876352, 9820480, 33529216, 114475904, 390845184, 1334428928, 4556025344, 15555243520, 53108923392, 181325206528, 619082979328, 2113681504256, 7216560058368
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((5+2*r)*(2+r)^n+(5-2*r)*(2-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 06 2009
-
LinearRecurrence[{4,-2},{5,14},30] (* Harvey P. Dale, Jan 31 2017 *)
-
x='x+O('x^50); Vec((5-6*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Jul 29 2017
A210754
Triangle of coefficients of polynomials v(n,x) jointly generated with A210753; see the Formula section.
Original entry on oeis.org
1, 3, 2, 6, 9, 4, 10, 25, 24, 8, 15, 55, 85, 60, 16, 21, 105, 231, 258, 144, 32, 28, 182, 532, 833, 728, 336, 64, 36, 294, 1092, 2241, 2720, 1952, 768, 128, 45, 450, 2058, 5301, 8361, 8280, 5040, 1728, 256, 55, 660, 3630, 11385, 22363, 28610, 23920
Offset: 1
First five rows:
1
3....2
6....9....4
10...25...24...8
15...55...85...60...16
First three polynomials v(n,x): 1, 3 + 2x, 6 + 9x +4x^2
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210753 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210754 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A007070 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A035344 *)
A214996
Power floor-ceiling sequence of 2+sqrt(2).
Original entry on oeis.org
3, 11, 37, 127, 433, 1479, 5049, 17239, 58857, 200951, 686089, 2342455, 7997641, 27305655, 93227337, 318298039, 1086737481, 3710353847, 12667940425, 43251054007, 147668335177, 504171232695, 1721348260425, 5877050576311, 20065505784393, 68507921984951
Offset: 0
a(0) = floor(r) = 3, where r = 2+sqrt(2).
a(1) = ceiling(3*r) = 11; a(2) = floor(11*r) = 37.
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((3+2*x-2*x^2)/(1-3*x-2*x^2+2*x^3))) // G. C. Greubel, Feb 02 2018
-
x = 2 + Sqrt[2]; z = 30; (* z = # terms in sequences *)
z1 = 100; (* z1 = # digits in approximations *)
f[x_] := Floor[x]; c[x_] := Ceiling[x];
p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
p1[n_] := f[x*p1[n - 1]]
p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
p4[n_] := c[x*p4[n - 1]]
Table[p1[n], {n, 0, z}] (* A007052 *)
Table[p2[n], {n, 0, z}] (* A214996 *)
Table[p3[n], {n, 0, z}] (* A214997 *)
Table[p4[n], {n, 0, z}] (* A007070 *)
-
Vec((3 + 2*x - 2*x^2) / ((1 + x)*(1 - 4*x + 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
A214997
Power ceiling-floor sequence of 2+sqrt(2).
Original entry on oeis.org
4, 13, 45, 153, 523, 1785, 6095, 20809, 71047, 242569, 828183, 2827593, 9654007, 32960841, 112535351, 384219721, 1311808183, 4478793289, 15291556791, 52208640585, 178251448759, 608588513865, 2077851157943, 7094227604041, 24221208100279, 82696377193033
Offset: 0
a(0) = ceiling(r) = 4, where r = 2+sqrt(2);
a(1) = floor(4*r) = 13; a(2) = ceiling(13*r) = 45.
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((4 +x-2*x^2)/(1-3*x-2*x^2+2*x^3))); // G. C. Greubel, Feb 01 2018
-
(See A214996.)
CoefficientList[Series[(4+x-2*x^2)/(1-3*x-2*x^2+2*x^3), {x,0,50}], x] (* G. C. Greubel, Feb 01 2018 *)
-
Vec((4 + x - 2*x^2) / ((1 + x)*(1 - 4*x + 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
A342133
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of g.f. 1/(1 - 2*k*x + k*x^2).
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 6, 14, 4, 0, 1, 8, 33, 48, 5, 0, 1, 10, 60, 180, 164, 6, 0, 1, 12, 95, 448, 981, 560, 7, 0, 1, 14, 138, 900, 3344, 5346, 1912, 8, 0, 1, 16, 189, 1584, 8525, 24960, 29133, 6528, 9, 0, 1, 18, 248, 2548, 18180, 80750, 186304, 158760, 22288, 10, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, ...
0, 3, 14, 33, 60, 95, ...
0, 4, 48, 180, 448, 900, ...
0, 5, 164, 981, 3344, 8525, ...
0, 6, 560, 5346, 24960, 80750, ...
Main diagonal gives (-1) *
A109520(n+1).
-
T:= (n, k)-> (<<0|1>, <-k|2*k>>^(n+1))[1, 2]:
seq(seq(T(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Mar 01 2021
-
T[n_, k_] := Sum[If[k == j == 0, 1, (2*k)^j] * (-2)^(j - n) * Binomial[j, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 27 2021 *)
-
T(n, k) = sum(j=0, n\2, (2*k)^(n-j)*(-2)^(-j)*binomial(n-j, j));
-
T(n, k) = sum(j=0, n, (2*k)^j*(-2)^(j-n)*binomial(j, n-j));
-
T(n, k) = round(sqrt(k)^n*polchebyshev(n, 2, sqrt(k)));
Comments