A096918
Intermediate prime factor of n-th product of 3 distinct primes.
Original entry on oeis.org
3, 3, 3, 5, 3, 3, 5, 5, 3, 5, 3, 7, 5, 5, 3, 7, 3, 5, 5, 3, 5, 7, 7, 3, 5, 3, 7, 7, 3, 5, 11, 5, 5, 3, 7, 5, 3, 7, 3, 5, 11, 7, 7, 3, 7, 5, 11, 3, 11, 5, 7, 5, 3, 13, 7, 5, 5, 3, 7, 13, 3, 11, 7, 5, 3, 5, 11, 7, 3, 5, 7, 13, 7, 3, 7, 5, 5, 3, 11, 11, 3, 5, 17, 7, 3, 7, 13, 7, 5, 3, 11, 5, 5, 11, 5
Offset: 1
-
f[n_]:=Last/@FactorInteger[n]=={1,1,1};f1[n_]:=Min[First/@FactorInteger[n]];f2[n_]:=Max[First/@FactorInteger[n]];f3[n_]:=First/@FactorInteger[n][[2,1]];lst={};Do[If[f[n],AppendTo[lst,f3[n]]],{n,0,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 10 2010 *)
-
from math import isqrt
from sympy import primepi, primerange, integer_nthroot, primefactors
def A096918(n):
def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1)))
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return sorted(primefactors(bisection(f)))[1] # Chai Wah Wu, Aug 30 2024
A096919
Greatest prime factor of n-th product of 3 distinct primes.
Original entry on oeis.org
5, 7, 11, 7, 13, 17, 7, 11, 19, 13, 23, 11, 11, 17, 29, 13, 31, 19, 13, 37, 23, 11, 17, 41, 17, 43, 19, 13, 47, 19, 13, 29, 31, 53, 23, 23, 59, 17, 61, 37, 17, 11, 19, 67, 29, 41, 19, 71, 13, 43, 31, 29, 73, 17, 13, 31, 47, 79, 23, 19, 83, 23, 37, 53, 89, 37, 17, 41, 97, 59
Offset: 1
-
f[n_]:=Last/@FactorInteger[n]=={1,1,1};f1[n_]:=Min[First/@FactorInteger[n]];f2[n_]:=Max[First/@FactorInteger[n]];lst={};Do[If[f[n],AppendTo[lst,f2[n]]],{n,0,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 10 2010 *)
-
from math import isqrt
from sympy import primepi, primerange, integer_nthroot, primefactors
def A096919(n):
def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1)))
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return max(primefactors(bisection(f))) # Chai Wah Wu, Aug 30 2024
A128896
Triangular numbers that are products of three distinct primes.
Original entry on oeis.org
66, 78, 105, 190, 231, 406, 435, 465, 561, 595, 741, 861, 903, 946, 1378, 1653, 2211, 2278, 2485, 3081, 3655, 3741, 4371, 4465, 5151, 5253, 5995, 6441, 7021, 7503, 8515, 8911, 9453, 9591, 10011, 10153, 10585, 11026, 12561, 13366, 14878, 15051, 15753
Offset: 1
a(1)=T(11)=66=2*3*11, a(2)=T(12)=78=2*3*13, a(3)=T(14)=105=3*5*7, a(4)=T(19)=190=2*5*19, a(5)=T(21)=231=3*7*11, a(6)=T(28)=406=2*7*29.
T(15) = 120 = 2^3*3*5. The triangular 120 has three prime factors but is not a product of these factors. Thus, 120 is not in this sequence.
-
Select[Table[n(n+1)/2,{n,1,210}],Transpose[FactorInteger[ # ]][[2]]=={1,1,1}&]
Select[Accumulate[Range[200]],PrimeNu[#]==PrimeOmega[#]==3&] (* Harvey P. Dale, Apr 23 2017 *)
A157346
Products of 3 distinct Sophie Germain primes.
Original entry on oeis.org
30, 66, 110, 138, 165, 174, 230, 246, 290, 318, 345, 410, 435, 498, 506, 530, 534, 615, 638, 678, 759, 786, 795, 830, 890, 902, 957, 1038, 1074, 1130, 1146, 1166, 1245, 1265, 1310, 1334, 1335, 1353, 1398, 1434, 1506, 1595, 1686, 1695, 1730, 1749, 1758, 1790
Offset: 1
30 = 2*3*5; 2,3 and 5 are distinct Sophie Germain primes.
66 = 2*3*11; 2,3 and 11 are distinct Sophie Germain primes.
-
lst={};Do[If[Plus@@Last/@FactorInteger[n]==3,a=Length[First/@FactorInteger[n]];If[a==3,b=First/@FactorInteger[n];c=b[[1]];d=b[[2]];e=b[[3]];If[PrimeQ[2*c+1]&&PrimeQ[2*d+1]&&PrimeQ[2*e+1],AppendTo[lst,n]]]],{n,7!}];lst
With[{sgps=Select[Prime[Range[100]],PrimeQ[2#+1]&]},Take[Union[ Times@@@ Subsets[sgps,{3}]],60]] (* Harvey P. Dale, Aug 10 2011 *)
A157347
Products of 3 distinct non-Sophie Germain primes.
Original entry on oeis.org
1547, 1729, 2261, 2821, 3367, 3689, 3913, 4123, 4199, 4277, 4403, 4921, 5117, 5369, 5551, 5593, 5719, 6097, 6251, 6461, 6643, 6851, 7021, 7189, 7259, 7657, 7847, 7973, 8029, 8113, 8177, 8449, 8687, 8827, 8911, 9139, 9191, 9331, 9373, 9401, 9443, 9503
Offset: 1
1547 = 7*13*17 is a term: its prime factors 7, 13, and 17 are not Sophie Germain primes.
-
S:=[ p: p in PrimesUpTo(120) | not IsPrime(2*p+1) ]; T:=[ q: a, b, c in S | a lt b and b lt c and q lt 10000 where q is a*b*c ]; Sort(~T); T; // Klaus Brockhaus, Apr 11 2009
-
lst={};Do[If[Plus@@Last/@FactorInteger[n]==3,a=Length[First/@FactorInteger[n]];If[a==3,b=First/@FactorInteger[n];c=b[[1]];d=b[[2]];e=b[[3]];If[ !PrimeQ[2*c+1]&&!PrimeQ[2*d+1]&&!PrimeQ[2*e+1],AppendTo[lst,n]]]],{n,8!}];lst
A178254
Number of permutations of the proper divisors of n such that no adjacent elements have a common divisor greater than 1.
Original entry on oeis.org
1, 1, 1, 2, 1, 6, 1, 2, 2, 6, 1, 4, 1, 6, 6, 0, 1, 4, 1, 4, 6, 6, 1, 0, 2, 6, 2, 4, 1, 36, 1, 0, 6, 6, 6, 0, 1, 6, 6, 0, 1, 36, 1, 4, 4, 6, 1, 0, 2, 4, 6, 4, 1, 0, 6, 0, 6, 6, 1, 0, 1, 6, 4, 0, 6, 36, 1, 4, 6, 36, 1, 0, 1, 6, 4, 4, 6, 36, 1, 0, 0, 6, 1, 0, 6, 6, 6, 0, 1, 0, 6, 4, 6, 6, 6, 0, 1, 4, 4, 0, 1, 36, 1
Offset: 1
Proper divisors for n=21 are: 1, 3, and 7:
a(39) = #{[1,3,7], [1,7,3], [3,1,7], [3,7,1], [7,1,3], [7,3,1]} = 6;
proper divisors for n=12 are: 1, 2, 3, 4, and 6:
a(12) = #{[2,3,4,1,6], [4,3,2,1,6], [6,1,2,3,4], [6,1,4,3,2]} = 4;
proper divisors for n=42: 1, 2, 3, 6, 7, 14, and 21:
a(42) = #{[2,21,1,6,7,3,14], [2,21,1,14,3,7,6], [3,14,1,6,7,2,21], [3,14,1,21,2,7,6], [6,1,14,3,7,2,21], [6,1,21,2,7,3,14], ...} = 36, see the appended file for the list of all permutations.
A179689
Numbers with prime signature {7,2}, i.e., of form p^7*q^2 with p and q distinct primes.
Original entry on oeis.org
1152, 3200, 6272, 8748, 15488, 21632, 36992, 46208, 54675, 67712, 107163, 107648, 123008, 175232, 215168, 236672, 264627, 282752, 312500, 359552, 369603, 445568, 476288, 574592, 632043, 645248, 682112, 703125, 789507, 798848, 881792, 1013888
Offset: 1
Cf.
A006881,
A007304,
A065036,
A085986,
A085987,
A092759,
A178739,
A179642,
A179643,
A179644,
A179645,
A179646,
A179664,
A179665,
A179666,
A179667,
A179668,
A179669,
A179670,
A179671,
A179672,
A179688.
-
a:= proc(n) option remember; local k;
for k from 1+ `if` (n=1, 1, a(n-1))
while sort (map (x-> x[2], ifactors(k)[2]), `>`)<>[7, 2]
do od; k
end:
seq (a(n), n=1..32); # Alois P. Heinz, Jan 23 2011
-
f[n_]:=Sort[Last/@FactorInteger[n]]=={2,7}; Select[Range[10^6], f]
-
list(lim)=my(v=List(),t);forprime(p=2, (lim\4)^(1/7), t=p^7;forprime(q=2, sqrt(lim\t), if(p==q, next);listput(v,t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
-
from math import isqrt
from sympy import primepi, integer_nthroot, primerange
def A179689(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(isqrt(x//p**7)) for p in primerange(integer_nthroot(x,7)[0]+1))+primepi(integer_nthroot(x,9)[0])
return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025
A179696
Numbers with prime signature {7,1,1}, i.e., of form p^7*q*r with p, q and r distinct primes.
Original entry on oeis.org
1920, 2688, 4224, 4480, 4992, 6528, 7040, 7296, 8320, 8832, 9856, 10880, 11136, 11648, 11904, 12160, 14208, 14720, 15232, 15744, 16512, 17024, 18048, 18304, 18560, 19840, 20352, 20608, 21870, 22656, 23424, 23680, 23936, 25728, 25984, 26240, 26752, 27264
Offset: 1
Cf.
A006881,
A007304,
A065036,
A085986,
A085987,
A092759,
A178739,
A179642,
A179643,
A179644,
A179645,
A179646,
A179664,
A179665,
A179666,
A179667,
A179668,
A179669,
A179670,
A179671,
A179672,
A179688,
A179689,
A179690,
A179691,
A179692,
A179693,
A179694,
A179695.
-
a:= proc(n) option remember; local k;
for k from 1+ `if` (n=1, 1, a(n-1))
while sort (map (x-> x[2], ifactors(k)[2]), `>`)<>[7, 1, 1]
do od; k
end:
seq (a(n), n=1..40); # Alois P. Heinz, Jan 23 2011
-
f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,7}; Select[Range[30000], f]
-
list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\6)^(1/7), t1=p^7;forprime(q=2, lim\t1, if(p==q, next);t2=t1*q;forprime(r=q+1, lim\t2, if(p==r,next);listput(v,t2*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
-
from math import isqrt
from sympy import primerange, primepi, integer_nthroot
def A179696(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**7)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(integer_nthroot(x,7)[0]+1))+sum(primepi(x//p**8) for p in primerange(integer_nthroot(x,8)[0]+1))-primepi(integer_nthroot(x,9)[0])
return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025
A267891
Numbers with 8 odd divisors.
Original entry on oeis.org
105, 135, 165, 189, 195, 210, 231, 255, 270, 273, 285, 297, 330, 345, 351, 357, 375, 378, 385, 390, 399, 420, 429, 435, 455, 459, 462, 465, 483, 510, 513, 540, 546, 555, 561, 570, 594, 595, 609, 615, 621, 627, 645, 651, 660, 663, 665, 690, 702, 705, 714, 715, 741, 750, 756, 759, 770, 777, 780, 783, 795, 798, 805, 837
Offset: 1
-
[n: n in [1..1000] | #[d: d in Divisors(n) | IsOdd(d)] eq 8]; // Bruno Berselli, Apr 04 2016
-
filter:= proc(n) local r;
r:= n/2^padic:-ordp(n,2);
numtheory:-tau(r)=8
end proc:
select(filter, [$1..1000]); # Robert Israel, Mar 15 2018
-
Select[Range@ 840, Length@ Select[Divisors@ #, OddQ] == 8 &] (* Michael De Vlieger, Dec 30 2016 *)
-
isok(n) = sumdiv(n, d, (d%2)) == 8; \\ after Michel Marcus
A066620
Number of unordered triples of distinct pairwise coprime divisors of n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 7, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 7, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 13, 0, 1, 2, 0, 1, 7, 0, 2, 1, 7, 0, 6, 0, 1, 2, 2, 1, 7, 0, 4, 0, 1, 0, 13, 1, 1, 1, 3, 0, 13, 1, 2, 1, 1, 1, 5, 0, 2, 2, 4, 0, 7, 0
Offset: 1
K. B. Subramaniam (kb_subramaniambalu(AT)yahoo.com) and Amarnath Murthy, Dec 24 2001
a(24) = 3: the divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24. The triples are (1, 2, 3), (1, 2, 9), (1, 3, 4).
a(30) = 7: the triples are (1, 2, 3), (1, 2, 5), (1, 3, 5), (2, 3, 5), (1, 3, 10), (1, 5, 6), (1, 2, 15).
- Amarnath Murthy, Decomposition of the divisors of a natural number into pairwise coprime sets, Smarandache Notions Journal, vol. 12, No. 1-2-3, Spring 2001.pp 303-306.
The version for subsets of {1..n} instead of divisors is
A015617.
The non-strict ordered version is
A048785.
The version for pairs of divisors is
A063647.
The non-strict version (3-multisets) is
A100565.
A version for sets of divisors of any size is
A225520.
A007304 ranks 3-part strict partitions.
A018892 counts unordered pairs of coprime divisors (ordered:
A048691).
A051026 counts pairwise indivisible subsets of {1..n}.
A337461 counts 3-part pairwise coprime compositions.
A338331 lists Heinz numbers of pairwise coprime partitions.
-
Table[Length[Select[Subsets[Divisors[n],{3}],CoprimeQ@@#&]],{n,100}] (* Gus Wiseman, Apr 28 2021 *)
-
A066620(n) = (numdiv(n^3)-3*numdiv(n)+2)/6; \\ After Jovovic's formula. - Antti Karttunen, May 27 2017
-
from sympy import divisor_count as d
def a(n): return (d(n**3) - 3*d(n) + 2)/6 # Indranil Ghosh, May 27 2017
Name corrected by
Gus Wiseman, Apr 28 2021 (ordered version is 6*a(n))
Comments