cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 214 results. Next

A096918 Intermediate prime factor of n-th product of 3 distinct primes.

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 5, 5, 3, 5, 3, 7, 5, 5, 3, 7, 3, 5, 5, 3, 5, 7, 7, 3, 5, 3, 7, 7, 3, 5, 11, 5, 5, 3, 7, 5, 3, 7, 3, 5, 11, 7, 7, 3, 7, 5, 11, 3, 11, 5, 7, 5, 3, 13, 7, 5, 5, 3, 7, 13, 3, 11, 7, 5, 3, 5, 11, 7, 3, 5, 7, 13, 7, 3, 7, 5, 5, 3, 11, 11, 3, 5, 17, 7, 3, 7, 13, 7, 5, 3, 11, 5, 5, 11, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 15 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1,1};f1[n_]:=Min[First/@FactorInteger[n]];f2[n_]:=Max[First/@FactorInteger[n]];f3[n_]:=First/@FactorInteger[n][[2,1]];lst={};Do[If[f[n],AppendTo[lst,f3[n]]],{n,0,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 10 2010 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot, primefactors
    def A096918(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return sorted(primefactors(bisection(f)))[1] # Chai Wah Wu, Aug 30 2024

Formula

A096917(n)*a(n)*A096919(n) = A007304(n).
A096917(n) < a(n) < A096919(n).

A096919 Greatest prime factor of n-th product of 3 distinct primes.

Original entry on oeis.org

5, 7, 11, 7, 13, 17, 7, 11, 19, 13, 23, 11, 11, 17, 29, 13, 31, 19, 13, 37, 23, 11, 17, 41, 17, 43, 19, 13, 47, 19, 13, 29, 31, 53, 23, 23, 59, 17, 61, 37, 17, 11, 19, 67, 29, 41, 19, 71, 13, 43, 31, 29, 73, 17, 13, 31, 47, 79, 23, 19, 83, 23, 37, 53, 89, 37, 17, 41, 97, 59
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 15 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1,1};f1[n_]:=Min[First/@FactorInteger[n]];f2[n_]:=Max[First/@FactorInteger[n]];lst={};Do[If[f[n],AppendTo[lst,f2[n]]],{n,0,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 10 2010 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot, primefactors
    def A096919(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return max(primefactors(bisection(f))) # Chai Wah Wu, Aug 30 2024

Formula

A096917(n)*A096918(n)*a(n) = A007304(n).
A096917(n) < A096918(n) < a(n).
a(n) = A006530(A007304(n)).

A128896 Triangular numbers that are products of three distinct primes.

Original entry on oeis.org

66, 78, 105, 190, 231, 406, 435, 465, 561, 595, 741, 861, 903, 946, 1378, 1653, 2211, 2278, 2485, 3081, 3655, 3741, 4371, 4465, 5151, 5253, 5995, 6441, 7021, 7503, 8515, 8911, 9453, 9591, 10011, 10153, 10585, 11026, 12561, 13366, 14878, 15051, 15753
Offset: 1

Views

Author

Zak Seidov, Apr 20 2007

Keywords

Examples

			a(1)=T(11)=66=2*3*11, a(2)=T(12)=78=2*3*13, a(3)=T(14)=105=3*5*7, a(4)=T(19)=190=2*5*19, a(5)=T(21)=231=3*7*11, a(6)=T(28)=406=2*7*29.
T(15) = 120 = 2^3*3*5. The triangular 120 has three prime factors but is not a product of these factors. Thus, 120 is not in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n(n+1)/2,{n,1,210}],Transpose[FactorInteger[ # ]][[2]]=={1,1,1}&]
    Select[Accumulate[Range[200]],PrimeNu[#]==PrimeOmega[#]==3&] (* Harvey P. Dale, Apr 23 2017 *)

Formula

a(n) = T(k) = k*(k+1)/2 = p*q*r for some k,p,q,r, where T(k) is triangular number and p, q, r are distinct primes.
Equals A000217 INTERSECT A007304 and A075875 INTERSECT A121478. - R. J. Mathar, Apr 22 2007

Extensions

Name clarified by Tanya Khovanova, Sep 06 2022

A157346 Products of 3 distinct Sophie Germain primes.

Original entry on oeis.org

30, 66, 110, 138, 165, 174, 230, 246, 290, 318, 345, 410, 435, 498, 506, 530, 534, 615, 638, 678, 759, 786, 795, 830, 890, 902, 957, 1038, 1074, 1130, 1146, 1166, 1245, 1265, 1310, 1334, 1335, 1353, 1398, 1434, 1506, 1595, 1686, 1695, 1730, 1749, 1758, 1790
Offset: 1

Views

Author

Keywords

Examples

			30 = 2*3*5; 2,3 and 5 are distinct Sophie Germain primes.
66 = 2*3*11; 2,3 and 11 are distinct Sophie Germain primes.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[Plus@@Last/@FactorInteger[n]==3,a=Length[First/@FactorInteger[n]];If[a==3,b=First/@FactorInteger[n];c=b[[1]];d=b[[2]];e=b[[3]];If[PrimeQ[2*c+1]&&PrimeQ[2*d+1]&&PrimeQ[2*e+1],AppendTo[lst,n]]]],{n,7!}];lst
    With[{sgps=Select[Prime[Range[100]],PrimeQ[2#+1]&]},Take[Union[ Times@@@ Subsets[sgps,{3}]],60]] (* Harvey P. Dale, Aug 10 2011 *)

A157347 Products of 3 distinct non-Sophie Germain primes.

Original entry on oeis.org

1547, 1729, 2261, 2821, 3367, 3689, 3913, 4123, 4199, 4277, 4403, 4921, 5117, 5369, 5551, 5593, 5719, 6097, 6251, 6461, 6643, 6851, 7021, 7189, 7259, 7657, 7847, 7973, 8029, 8113, 8177, 8449, 8687, 8827, 8911, 9139, 9191, 9331, 9373, 9401, 9443, 9503
Offset: 1

Views

Author

Keywords

Examples

			1547 = 7*13*17 is a term: its prime factors 7, 13, and 17 are not Sophie Germain primes.
		

Crossrefs

Programs

  • Magma
    S:=[ p: p in PrimesUpTo(120) | not IsPrime(2*p+1) ]; T:=[ q: a, b, c in S | a lt b and b lt c and q lt 10000 where q is a*b*c ]; Sort(~T); T; // Klaus Brockhaus, Apr 11 2009
  • Mathematica
    lst={};Do[If[Plus@@Last/@FactorInteger[n]==3,a=Length[First/@FactorInteger[n]];If[a==3,b=First/@FactorInteger[n];c=b[[1]];d=b[[2]];e=b[[3]];If[ !PrimeQ[2*c+1]&&!PrimeQ[2*d+1]&&!PrimeQ[2*e+1],AppendTo[lst,n]]]],{n,8!}];lst

Extensions

Entries verified by Klaus Brockhaus, Apr 11 2009

A178254 Number of permutations of the proper divisors of n such that no adjacent elements have a common divisor greater than 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 2, 2, 6, 1, 4, 1, 6, 6, 0, 1, 4, 1, 4, 6, 6, 1, 0, 2, 6, 2, 4, 1, 36, 1, 0, 6, 6, 6, 0, 1, 6, 6, 0, 1, 36, 1, 4, 4, 6, 1, 0, 2, 4, 6, 4, 1, 0, 6, 0, 6, 6, 1, 0, 1, 6, 4, 0, 6, 36, 1, 4, 6, 36, 1, 0, 1, 6, 4, 4, 6, 36, 1, 0, 0, 6, 1, 0, 6, 6, 6, 0, 1, 0, 6, 4, 6, 6, 6, 0, 1, 4, 4, 0, 1, 36, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2010

Keywords

Comments

Depends only on prime signature;
range = {0, 1, 2, 4, 6, 36};
a(A033987(n)) = 0; a(A037144(n)) > 0;
a(A008578(n))=1; a(A168363(n))=2; a(A054753(n))=4; a(A006881(n))=6; a(A007304(n))=36.

Examples

			Proper divisors for n=21 are: 1, 3, and 7:
a(39) = #{[1,3,7], [1,7,3], [3,1,7], [3,7,1], [7,1,3], [7,3,1]} = 6;
proper divisors for n=12 are: 1, 2, 3, 4, and 6:
a(12) = #{[2,3,4,1,6], [4,3,2,1,6], [6,1,2,3,4], [6,1,4,3,2]} = 4;
proper divisors for n=42: 1, 2, 3, 6, 7, 14, and 21:
a(42) = #{[2,21,1,6,7,3,14], [2,21,1,14,3,7,6], [3,14,1,6,7,2,21], [3,14,1,21,2,7,6], [6,1,14,3,7,2,21], [6,1,21,2,7,3,14], ...} = 36, see the appended file for the list of all permutations.
		

Crossrefs

Cf. A109810.

A179689 Numbers with prime signature {7,2}, i.e., of form p^7*q^2 with p and q distinct primes.

Original entry on oeis.org

1152, 3200, 6272, 8748, 15488, 21632, 36992, 46208, 54675, 67712, 107163, 107648, 123008, 175232, 215168, 236672, 264627, 282752, 312500, 359552, 369603, 445568, 476288, 574592, 632043, 645248, 682112, 703125, 789507, 798848, 881792, 1013888
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+ `if` (n=1, 1, a(n-1))
            while sort (map (x-> x[2], ifactors(k)[2]), `>`)<>[7, 2]
          do od; k
        end:
    seq (a(n), n=1..32);  # Alois P. Heinz, Jan 23 2011
  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,7}; Select[Range[10^6], f]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\4)^(1/7), t=p^7;forprime(q=2, sqrt(lim\t), if(p==q, next);listput(v,t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A179689(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(isqrt(x//p**7)) for p in primerange(integer_nthroot(x,7)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(7) - P(9) = A085548 * A085967 - A085969 = 0.001741..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

Extensions

Title edited by Daniel Forgues, Jan 22 2011

A179696 Numbers with prime signature {7,1,1}, i.e., of form p^7*q*r with p, q and r distinct primes.

Original entry on oeis.org

1920, 2688, 4224, 4480, 4992, 6528, 7040, 7296, 8320, 8832, 9856, 10880, 11136, 11648, 11904, 12160, 14208, 14720, 15232, 15744, 16512, 17024, 18048, 18304, 18560, 19840, 20352, 20608, 21870, 22656, 23424, 23680, 23936, 25728, 25984, 26240, 26752, 27264
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+ `if` (n=1, 1, a(n-1))
            while sort (map (x-> x[2], ifactors(k)[2]), `>`)<>[7, 1, 1]
          do od; k
        end:
    seq (a(n), n=1..40); # Alois P. Heinz, Jan 23 2011
  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,7}; Select[Range[30000], f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\6)^(1/7), t1=p^7;forprime(q=2, lim\t1, if(p==q, next);t2=t1*q;forprime(r=q+1, lim\t2, if(p==r,next);listput(v,t2*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primerange, primepi, integer_nthroot
    def A179696(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**7)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(integer_nthroot(x,7)[0]+1))+sum(primepi(x//p**8) for p in primerange(integer_nthroot(x,8)[0]+1))-primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Extensions

Title edited by Daniel Forgues, Jan 22 2011

A267891 Numbers with 8 odd divisors.

Original entry on oeis.org

105, 135, 165, 189, 195, 210, 231, 255, 270, 273, 285, 297, 330, 345, 351, 357, 375, 378, 385, 390, 399, 420, 429, 435, 455, 459, 462, 465, 483, 510, 513, 540, 546, 555, 561, 570, 594, 595, 609, 615, 621, 627, 645, 651, 660, 663, 665, 690, 702, 705, 714, 715, 741, 750, 756, 759, 770, 777, 780, 783, 795, 798, 805, 837
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2016

Keywords

Comments

Positive integers that have exactly eight odd divisors.
Numbers n such that the symmetric representation of sigma(n) has 8 subparts. - Omar E. Pol, Dec 29 2016
Numbers n such that A000265(n) has prime signature {7} or {3,1} or {1,1,1}, i.e., is in A092759 or A065036 or A007304. - Robert Israel, Mar 15 2018
Numbers that can be formed in exactly 7 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018

Crossrefs

Column 8 of A266531.
Numbers with exactly k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, A267697, this sequence, A267892, A267893.

Programs

  • Magma
    [n: n in [1..1000] | #[d: d in Divisors(n) | IsOdd(d)] eq 8]; // Bruno Berselli, Apr 04 2016
  • Maple
    filter:= proc(n) local r;
      r:= n/2^padic:-ordp(n,2);
      numtheory:-tau(r)=8
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 15 2018
  • Mathematica
    Select[Range@ 840, Length@ Select[Divisors@ #, OddQ] == 8 &] (* Michael De Vlieger, Dec 30 2016 *)
  • PARI
    isok(n) = sumdiv(n, d, (d%2)) == 8; \\ after Michel Marcus
    

Formula

A001227(a(n)) = 8.

A066620 Number of unordered triples of distinct pairwise coprime divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 7, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 7, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 13, 0, 1, 2, 0, 1, 7, 0, 2, 1, 7, 0, 6, 0, 1, 2, 2, 1, 7, 0, 4, 0, 1, 0, 13, 1, 1, 1, 3, 0, 13, 1, 2, 1, 1, 1, 5, 0, 2, 2, 4, 0, 7, 0
Offset: 1

Views

Author

K. B. Subramaniam (kb_subramaniambalu(AT)yahoo.com) and Amarnath Murthy, Dec 24 2001

Keywords

Comments

a(m) = a(n) if m and n have same factorization structure.

Examples

			a(24) = 3: the divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24. The triples are (1, 2, 3), (1, 2, 9), (1, 3, 4).
a(30) = 7: the triples are (1, 2, 3), (1, 2, 5), (1, 3, 5), (2, 3, 5), (1, 3, 10), (1, 5, 6), (1, 2, 15).
		

References

  • Amarnath Murthy, Decomposition of the divisors of a natural number into pairwise coprime sets, Smarandache Notions Journal, vol. 12, No. 1-2-3, Spring 2001.pp 303-306.

Crossrefs

Positions of zeros are A000961.
Positions of ones are A006881.
The version for subsets of {1..n} instead of divisors is A015617.
The non-strict ordered version is A048785.
The version for pairs of divisors is A063647.
The non-strict version (3-multisets) is A100565.
The version for partitions is A220377 (non-strict: A307719).
A version for sets of divisors of any size is A225520.
A000005 counts divisors.
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A007304 ranks 3-part strict partitions.
A014311 ranks 3-part compositions.
A014612 ranks 3-part partitions.
A018892 counts unordered pairs of coprime divisors (ordered: A048691).
A051026 counts pairwise indivisible subsets of {1..n}.
A337461 counts 3-part pairwise coprime compositions.
A338331 lists Heinz numbers of pairwise coprime partitions.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Divisors[n],{3}],CoprimeQ@@#&]],{n,100}] (* Gus Wiseman, Apr 28 2021 *)
  • PARI
    A066620(n) = (numdiv(n^3)-3*numdiv(n)+2)/6; \\ After Jovovic's formula. - Antti Karttunen, May 27 2017
    
  • Python
    from sympy import divisor_count as d
    def a(n): return (d(n**3) - 3*d(n) + 2)/6 # Indranil Ghosh, May 27 2017

Formula

In the reference it is shown that if k is a squarefree number with r prime factors and m with (r+1) prime factors then a(m) = 4*a(k) + 2^k - 1.
a(n) = (tau(n^3)-3*tau(n)+2)/6. - Vladeta Jovovic, Nov 27 2004

Extensions

More terms from Vladeta Jovovic, Apr 03 2003
Name corrected by Andrey Zabolotskiy, Dec 09 2020
Name corrected by Gus Wiseman, Apr 28 2021 (ordered version is 6*a(n))
Previous Showing 61-70 of 214 results. Next