cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A007956 Product of the proper divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 8, 3, 10, 1, 144, 1, 14, 15, 64, 1, 324, 1, 400, 21, 22, 1, 13824, 5, 26, 27, 784, 1, 27000, 1, 1024, 33, 34, 35, 279936, 1, 38, 39, 64000, 1, 74088, 1, 1936, 2025, 46, 1, 5308416, 7, 2500, 51, 2704, 1, 157464, 55, 175616, 57, 58, 1, 777600000, 1, 62, 3969, 32768, 65
Offset: 1

Views

Author

R. Muller

Keywords

Comments

From Bernard Schott, Feb 01 2019: (Start)
a(n) = 1 iff n = 1 or n is prime.
a(n) = n when n > 1 iff n has exactly four divisors, equally, iff n is either the cube of a prime or the product of two different primes, so iff n belongs to A030513 (very nice proof in Sierpiński).
a(p^3) = 1 * p * p^2 = p^3; a(p*q) = 1 * p * q = p*q.
As a(1) = 1, {1} Union A030513 = A007422, fixed points of this sequence. (End)

Examples

			a(18) = 1 * 2 * 3 * 6 * 9 = 324. - _Bernard Schott_, Jan 31 2019
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 57.
  • Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.

Crossrefs

Cf. A007422 (fixed points). A030513 (subsequence).
Cf. A001065 (sums of proper divisors).

Programs

  • Haskell
    a007956 = product . a027751_row
    -- Reinhard Zumkeller, Feb 04 2013, Nov 02 2011
    
  • Maple
    A007956 := n -> mul(i,i=op(numtheory[divisors](n) minus {1,n}));
    seq(A007956(i), i=1..79); # Peter Luschny, Mar 22 2011
  • Mathematica
    Table[Times@@Most[Divisors[n]], {n, 65}] (* Alonso del Arte, Apr 18 2011 *)
    a[n_] := n^(DivisorSigma[0, n]/2 - 1); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Oct 07 2013 *)
  • PARI
    A007956(n) = local(a);a=1;fordiv(n,d,a=a*d);a/n \\ Michael B. Porter, Dec 01 2009
    
  • PARI
    a(n)=my(k); if(issquare(n, &k), k^(numdiv(n)-2), n^(numdiv(n)/2-1)) \\ Charles R Greathouse IV, Oct 15 2015
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A007956(n): return isqrt(n)**(d-2) if (d:=divisor_count(n))&1 else n**((d>>1)-1) # Chai Wah Wu, Jun 18 2023

Formula

a(n) = A007955(n)/n = n^(A000005(n)/2-1) = sqrt(n^(number of factors of n other than 1 and n)).
a(n) = Product_{k=1..A000005(n)-1} A027751(n,k). - Reinhard Zumkeller, Feb 04 2013
a(n) = A240694(n, A000005(n)-1) for n > 1. - Reinhard Zumkeller, Apr 10 2014
Sum_{k=1..n} 1/a(k) ~ pi(n) + log(log(n))^2 + c_1*log(log(n)) + c_2 + O(log(log(n))/log(n)), where pi(n) = A000720(n) and c_1 and c_2 are constants (Weiyi, 2004; Sandor and Crstici, 2004). - Amiram Eldar, Oct 29 2022

Extensions

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)

A030513 Numbers with 4 divisors.

Original entry on oeis.org

6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A007422.
Numbers which are either the product of two distinct primes (A006881) or the cube of a prime (A030078).
4*a(n) are the solutions to A048272(x) = Sum_{d|x} (-1)^d = 4. - Benoit Cloitre, Apr 14 2002
Since A119479(4)=3, there are never more than 3 consecutive integers in the sequence. Triples of consecutive integers start at 33, 85, 93, 141, 201, ... (A039833). No such triple contains a term of the form p^3. - Ivan Neretin, Feb 08 2016
Numbers that are equal to the product of their proper divisors (A007956) (proof in Sierpiński). - Bernard Schott, Apr 04 2022

References

  • Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.

Crossrefs

Equals the disjoint union of A006881 and A030078.

Programs

  • Magma
    [n: n in [1..200] | DivisorSigma(0, n) eq 4]; // Vincenzo Librandi, Jul 16 2015
    
  • Mathematica
    Select[Range[200], DivisorSigma[0,#]==4&] (* Harvey P. Dale, Apr 06 2011 *)
  • PARI
    is(n)=numdiv(n)==4 \\ Charles R Greathouse IV, May 18 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A030513(n):
        def f(x): return int(n+x-primepi(integer_nthroot(x,3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 16 2024

Formula

{n : A000005(n) = 4}. - Juri-Stepan Gerasimov, Oct 10 2009

Extensions

Incorrect comments removed by Charles R Greathouse IV, Mar 18 2010

A003680 Smallest number with 2n divisors.

Original entry on oeis.org

2, 6, 12, 24, 48, 60, 192, 120, 180, 240, 3072, 360, 12288, 960, 720, 840, 196608, 1260, 786432, 1680, 2880, 15360, 12582912, 2520, 6480, 61440, 6300, 6720, 805306368, 5040, 3221225472, 7560, 46080, 983040, 25920, 10080, 206158430208, 3932160, 184320, 15120
Offset: 1

Views

Author

Keywords

Comments

Refers to the least number which is multiplicatively n-perfect, i.e. least number m the product of whose divisors equals m^n. - Lekraj Beedassy, Sep 18 2004
For n=1 to 5, a(n) equals second term of A008578, A007422, A162947, A048945, A030628. - Michel Marcus, Feb 04 2014

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 23.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005179 (n), A061283 (2n-1), A118224 (at least 2n).

Programs

  • Mathematica
    A005179 = Cases[Import["https://oeis.org/A005179/b005179.txt", "Table"], {, }][[All, 2]];
    A = {#, DivisorSigma[0, #]}& /@ A005179;
    a[n_] := SelectFirst[A, #[[2]] == 2n&][[1]];
    a /@ Range[1000] (* Jean-François Alcover, Nov 10 2019 *)
    mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m < n, {}, {{n}}]; mp[n_, m_] := Join @@ Table[Map[Prepend[#, d] &, mp[n/d, d]], {d, Select[Rest[Divisors[n]], # <= m &]}]; mp[n_] := mp[n, n]; Table[mulpar = mp[2*n] - 1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]], {n, 1, 100}] (* Vaclav Kotesovec, Apr 04 2021 *)
    With[{tbl=Table[{n,DivisorSigma[0,n]},{n,800000}]},Table[SelectFirst[tbl,#[[2]]==2k&],{k,20}]][[;;,1]] (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Jul 06 2025 *)
  • PARI
    a(n)=my(k=2*n); while(numdiv(k)!=2*n, k++); k \\ Charles R Greathouse IV, Jun 23 2017
    
  • Python
    from sympy import divisors
    def a(n):
      m = 4*n - 2
      while len(divisors(m)) != 2*n: m += 1
      return m
    print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Feb 06 2021

Formula

Bisection of A005179(n). - Lekraj Beedassy, Sep 21 2004

Extensions

More terms from Jud McCranie Oct 15 1997

A030628 1 together with numbers of the form p*q^4 and p^9, where p and q are distinct primes.

Original entry on oeis.org

1, 48, 80, 112, 162, 176, 208, 272, 304, 368, 405, 464, 496, 512, 567, 592, 656, 688, 752, 848, 891, 944, 976, 1053, 1072, 1136, 1168, 1250, 1264, 1328, 1377, 1424, 1539, 1552, 1616, 1648, 1712, 1744, 1808, 1863, 1875, 2032, 2096, 2192, 2224, 2349, 2384
Offset: 1

Views

Author

Keywords

Comments

Also 1 together with numbers with 10 divisors. Also numbers n such that product of all proper divisors of n equals n^4.
If M(n) denotes the product of all divisors of n, then n is said to be k-multiplicatively perfect if M(n)=n^k. All such numbers are of the form p*q^(k-1) or p^(2k-1). The sequence A030628 is therefore 5-multiplicatively perfect. See the Links for A007422. - Walter Kehowski, Sep 13 2005

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston, MA, 1976. p. 119.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, entry for 48, page 106, 1997.

Crossrefs

Programs

  • Maple
    with(numtheory): k:=5: MPL:=[]: for z from 1 to 1 do for n from 1 to 5000 do if convert(divisors(n),`*`) = n^k then MPL:=[op(MPL),n] fi od; od; MPL; # Walter Kehowski, Sep 13 2005
  • Mathematica
    Join[{1},Select[Range[6000],DivisorSigma[0,#]==10&]] (* Vladimir Joseph Stephan Orlovsky, May 05 2011 *)
    Select[Range[2500],Times@@Most[Divisors[#]]==#^4&] (* Harvey P. Dale, Nov 04 2024 *)
  • PARI
    {v=[]; for(n=1,500,v=concat(v, if(numdiv(n)==10,n,",")); ); v} \\ Jason Earls, Jun 18 2001
    
  • PARI
    list(lim)=my(v=List([1]), t); forprime(p=2, (lim\2+.5)^(1/4), t=p^4; forprime(q=2, lim\t, if(p==q, next); listput(v, t*q))); forprime(p=2,(lim+.5)^(1/9),listput(v,p^9)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Apr 26 2012
    
  • Python
    from sympy import primepi, primerange, integer_nthroot
    def A030628(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n-1+x-sum(primepi(x//p**4) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,5)[0])-primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Union A178739 U A179665 {1}. - R. J. Mathar, Apr 03 2011

Extensions

Better description from Sharon Sela (sharonsela(AT)hotmail.com), Dec 23 2001
More terms from Walter Kehowski, Sep 13 2005

A084110 Let L(n) = ordered list of divisors of n = {d_1=1, d_2, ..., d_k=n}; set e_1=1, e_i = e_{i-1}/d_i if that is an integer otherwise e_i = e_{i-1}*d_i; then a(n) = e_k.

Original entry on oeis.org

1, 2, 3, 8, 5, 1, 7, 1, 27, 1, 11, 48, 13, 1, 1, 16, 17, 162, 19, 80, 1, 1, 23, 16, 125, 1, 1, 112, 29, 25, 31, 512, 1, 1, 1, 1944, 37, 1, 1, 25, 41, 49, 43, 176, 405, 1, 47, 48, 343, 1250, 1, 208, 53, 324, 1, 49, 1, 1, 59, 9, 61, 1, 567, 8, 1, 121, 67, 272, 1, 49, 71, 9, 73, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 12 2003

Keywords

Comments

a(n) = r(n,tau(n)), where r is defined as follows:
let d(n,j) = j-th divisor of n, 1 <= j <= tau(n) = A000005(n), r(n,1)=d(n,1), r(n,j) = if d(n,j) divides r(n,j-1) then r(n,j-1)/d(n,j) else r(n,j-1)*d(n,j), 1 < j <= tau(n);
p prime: a(p)=p, a(p^2)=p^3, a(p^3)=1, a(p^k)=p^A008344(k+1);
a(m)=1 iff m multiplicatively perfect: a(A007422(k))=1.
a(A084111(n)) = A084111(n). - Reinhard Zumkeller, Jul 31 2014

Examples

			Divisors of 48 = {1,2,3,4,6,8,12,16,24,48}: 1*2*3 = 6 -> 6*4 = 24 -> 24/6 = 4 -> 4*8 = 32 -> 32*12 = 384 -> 384/16 = 24 -> 24/24 = 1 -> 1*48 = a(48);
divisors of 49 = {1,7,49}: 1*7 = 7 -> 7*49 = 343 = a(49);
divisors of 50 = {1,2,5,10,25,50}: 1*2*5 = 10 -> 10/10 = 1 -> 1*25 = 25 -> 25*50 = 1250 = a(50).
		

Crossrefs

Cf. A027750, A084111 (fixed points), A084113, A084114.

Programs

  • Haskell
    a084110 = foldl (/*) 1 . a027750_row where
       x /* y = if m == 0 then x' else x*y where (x',m) = divMod x y
    -- Reinhard Zumkeller, Feb 21 2012, Oct 25 2010
  • Mathematica
    a[n_] := Module[{d = Divisors[n], e}, e[i_] := e[i] = If[i == 1, 1, If[Divisible[e[i-1], d[[i]]], e[i-1]/d[[i]], e[i-1] d[[i]]]]; e[Length[d]]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 10 2021 *)

Extensions

Corrected and extended by David Wasserman, Dec 14 2004

A058080 Numbers whose product of divisors exceeds their square.

Original entry on oeis.org

12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 126, 128, 130, 132, 135, 136, 138, 140, 144, 147
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2000

Keywords

Comments

Numbers with five or more divisors. - Lekraj Beedassy, Sep 11 2003
Called multiplicatively abundant numbers by Chau (2004). - Amiram Eldar, Jun 29 2022

Crossrefs

Complement of A007964.

Programs

  • Mathematica
    Select[Range[150], #^(DivisorSigma[0, #]/2) > #^2 &] (* Amiram Eldar, Jun 29 2022 *)
    Select[Range[200],Times@@Divisors[#]>#^2&] (* Harvey P. Dale, Oct 20 2024 *)
  • PARI
    is(n)=numdiv(n)>4 \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from sympy import divisor_count
    def ok(n): return divisor_count(n) > 4
    print([k for k in range(148) if ok(k)]) # Michael S. Branicky, Dec 16 2021

Formula

The number of terms not exceeding x is N(x) ~ x*(1 - log(log(x))/log(x)) (Chau, 2004). - Amiram Eldar, Jun 29 2022

A084116 Numbers m such that A084115(m) = 1.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119
Offset: 1

Views

Author

Reinhard Zumkeller, May 12 2003

Keywords

Comments

A084113(a(n)) = A084114(a(n)) + 1.
Union of primes and multiplicatively perfect numbers (A000040, A007422).
A084115(a(n)) = 1; A066729(a(n)) = a(n).

Crossrefs

Cf. A084110, A066729, A084113, A084114, A084115, A066423 (complement).

Programs

  • Haskell
    a084116 n = a084116_list !! (n-1)
    a084116_list = filter ((== 1) . a084115) [1..]
    -- Reinhard Zumkeller, Jul 31 2014
    
  • Mathematica
    Select[Range[2, 200], PrimeQ[DivisorSigma[0, #]^DivisorSigma[0, #] + 1] &] (* Carl Najafi, Oct 19 2011 *)
  • PARI
    is(n)=isprime(n) || numdiv(n) == 4 \\ Charles R Greathouse IV, Oct 19 2015

Formula

It appears that a(n) = n such that A000005(n)^A000005(n)+1 is prime. - Carl Najafi, Oct 19 2011

Extensions

Corrected and edited by Carl Najafi, Oct 19 2011
Revised by Reinhard Zumkeller, Jul 31 2014

A036455 Numbers n such that d(d(n)) is an odd prime, where d(k) is the number of divisors of k.

Original entry on oeis.org

6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 168, 177, 178, 183
Offset: 1

Views

Author

Keywords

Comments

Compare with sequence A007422 and A030513 -- the resemblance is rather strong. Still this sequence is different. For example, 36, 100, 120, and 168 are here.

Examples

			a(15) = 39 and d(39) = 4, d(d(39)) = d(4) = 3 and d(d(d(39))) = 2. After 3 iteration the equilibrium is reached.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local r;
      r:= numtheory:-tau(numtheory:-tau(n));
      r::odd and isprime(r)
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Feb 02 2016
  • Mathematica
    fQ[n_] := Module[{d2 = DivisorSigma[0, DivisorSigma[0, n]]}, d2 > 2 && PrimeQ[d2]]; Select[Range[200], fQ] (* T. D. Noe, Jan 22 2013 *)
  • PARI
    is(n)=isprime(n=numdiv(numdiv(n))) && n>2 \\ Charles R Greathouse IV, Jan 22 2013

Formula

d(d(d(a(n)))) = 2 for all n.
A036459(a(n)) = 3. - Ivan Neretin, Jan 25 2016

Extensions

Definition clarified by R. J. Mathar and Charles R Greathouse IV, Jan 22 2013

A048741 Product of aliquot divisors of composite n (1 and primes omitted).

Original entry on oeis.org

2, 6, 8, 3, 10, 144, 14, 15, 64, 324, 400, 21, 22, 13824, 5, 26, 27, 784, 27000, 1024, 33, 34, 35, 279936, 38, 39, 64000, 74088, 1936, 2025, 46, 5308416, 7, 2500, 51, 2704, 157464, 55, 175616, 57, 58, 777600000, 62, 3969, 32768, 65, 287496, 4624, 69
Offset: 1

Views

Author

Keywords

Examples

			The third composite number is 8, for which the product of aliquot divisors is 4*2*1 = 8, so a(3)=8.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed., pages 10, 23. New York: Dover, 1966. ISBN 0-486-21096-0.

Crossrefs

This is A007956 omitting the 1's.

Programs

  • Mathematica
    Composite[n_] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; Table[ Times @@ Select[ Divisors[ Composite[n]], # < Composite[n] & ], {n, 1, 60} ]
    pd[n_] := n^(DivisorSigma[0, n]/2 - 1); pd /@ Select[Range[100], CompositeQ] (* Amiram Eldar, Sep 07 2019 *)

Formula

a(n) = A007956(A002808(n)). - Michel Marcus, Sep 07 2019

Extensions

a(33) inserted by Amiram Eldar, Sep 07 2019

A162947 Numbers k such that the product of all divisors of k equals k^3.

Original entry on oeis.org

1, 12, 18, 20, 28, 32, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 243, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428
Offset: 1

Views

Author

Claudio Meller, Jul 18 2009

Keywords

Comments

Contains the terms of A054753 (products p*q^2 of a prime p and the square of a different prime q), 1, and p^5, where p is prime.
Numbers k such that k^2 is equal to the product of proper divisors of k. - Juri-Stepan Gerasimov, May 03 2011

Examples

			18 is in the sequence because the product of its divisors is 1 * 2 * 3 * 6 * 9 * 18 = 18^3.
		

Crossrefs

Cf. A111398, A030628. - R. J. Mathar, Jul 19 2009
Cf. A008578 (product of divisors equals n), A007422 (product of divisors equals n^2).

Programs

  • Mathematica
    Select[Range[500], Surd[Times@@Divisors[#], 3] == # &] (* Harvey P. Dale, Mar 15 2017 *)
    Join[{1},Select[Range[430],DivisorSigma[0,#]==6 &]] (* Stefano Spezia, Jul 14 2025 *)
  • PARI
    isok(n) = my(d = divisors(n)); prod(i=1, #d, d[i]) == n^3; \\ Michel Marcus, Feb 04 2014
    
  • PARI
    \\ See Corneth link
    
  • Python
    from itertools import chain, count, islice
    from sympy import divisor_count
    def A162947_gen(): # generator of terms
        return chain((1,),filter(lambda n:divisor_count(n)==6,count(2)))
    A162947_list = list(islice(A162947_gen(),20)) # Chai Wah Wu, Jun 25 2022

Formula

{n: A007955(n) = A000578(n)}. - R. J. Mathar, Jul 19 2009
{1} UNION A030515. - R. J. Mathar, Jul 19 2009

Extensions

Edited by R. J. Mathar, Jul 19 2009
Previous Showing 11-20 of 31 results. Next