cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 66 results. Next

A053822 Dirichlet inverse of sigma_2 function (A001157).

Original entry on oeis.org

1, -5, -10, 4, -26, 50, -50, 0, 9, 130, -122, -40, -170, 250, 260, 0, -290, -45, -362, -104, 500, 610, -530, 0, 25, 850, 0, -200, -842, -1300, -962, 0, 1220, 1450, 1300, 36, -1370, 1810, 1700, 0, -1682, -2500, -1850, -488, -234, 2650, -2210, 0, 49, -125, 2900, -680
Offset: 1

Views

Author

N. J. A. Sloane, Apr 08 2000

Keywords

Comments

sigma_2(n) is the sum of the squares of the divisors of n (A001157).

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 39.

Crossrefs

Dirichlet inverse of sigma_k(n): A007427 (k = 0), A046692 (k = 1), A053825 (k = 3), A053826 (k = 4), A178448 (k = 5).
Cf. A001157,.

Programs

  • Maple
    f1:= proc(p,e) if e = 1 then -1-p^2 elif e=2 then p^2 else 0 fi end proc:
    f:= n -> mul(f1(t[1],t[2]),t=ifactors(n)[2]);
    map(f, [$1..100]); # Robert Israel, Jan 29 2018
  • Mathematica
    a[n_] := Sum[MoebiusMu[n/d] MoebiusMu[d] d^2, {d, Divisors[n]}];
    Array[a, 100] (* Jean-François Alcover, Mar 05 2019, after Ilya Gutkovskiy *)
    f[p_, e_] := If[e == 1, -p^2 - 1, If[e == 2, p^2, 0]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sigma(n, 2)))} \\ Andrew Howroyd, Aug 05 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)*(1 - p^2*X))[n], ", ")) \\ Vaclav Kotesovec, Sep 16 2020

Formula

Dirichlet g.f.: 1/(zeta(s)*zeta(s-2)).
Multiplicative with a(p^1) = -1-p^2, a(p^2) = p^2, a(p^e) = 0 for e>=3. - Mitch Harris, Jun 27 2005
a(n) = Sum_{d|n} mu(n/d)*mu(d)*d^2. - Ilya Gutkovskiy, Nov 06 2018
From Peter Bala, Jan 26 2024: (Start)
a(n) = Sum_{d divides n} d * (sigma(d))^(-1) * phi(n/d), where (sigma(n))^(-1) = A046692(n) denotes the Dirichlet inverse of sigma(n) = A000203(n).
a(n) = Sum_{d divides n} d^2 * (sigma_k(d))^(-1) * J_(k+2)(n/d) for k >= 0, where (sigma_k(n))^(-1) denotes the Dirichlet inverse of the divisor sum function sigma_k(n) and J_k(n) denotes the Jordan totient function. (End)

A053826 Dirichlet inverse of sigma_4 function (A001159).

Original entry on oeis.org

1, -17, -82, 16, -626, 1394, -2402, 0, 81, 10642, -14642, -1312, -28562, 40834, 51332, 0, -83522, -1377, -130322, -10016, 196964, 248914, -279842, 0, 625, 485554, 0, -38432, -707282, -872644, -923522, 0, 1200644, 1419874, 1503652, 1296, -1874162
Offset: 1

Views

Author

N. J. A. Sloane, Apr 08 2000

Keywords

Comments

sigma_4(n) is the sum of the 4th powers of the divisors of n (A001159).

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 39.

Crossrefs

Dirichlet inverse of sigma_k(n): A007427 (k = 0), A046692 (k = 1), A053822(k = 2), A053825 (k = 3), A178448 (k = 5).
Cf. A001159, A046099 (where a(n) = 0).

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#]*MoebiusMu[#]*#^4  &], {n, 1, 50}] (* G. C. Greubel, Nov 07 2018 *)
    f[p_, e_] := If[e == 1, -p^4 - 1, If[e == 2, p^4, 0]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*moebius(d)*d^4); \\ Michel Marcus, Nov 06 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)*(1 - p^4*X))[n], ", ")) \\ Vaclav Kotesovec, Sep 16 2020

Formula

Dirichlet g.f.: 1/(zeta(s)*zeta(s-4)).
Multiplicative with a(p^1) = -1 - p^4, a(p^2) = p^4, a(p^e) = 0 for e>=3. - Mitch Harris, Jun 27 2005
a(n) = Sum_{d|n} mu(n/d)*mu(d)*d^4. - Ilya Gutkovskiy, Nov 06 2018
From Peter Bala, Jan 17 2024: (Start)
a(n) = Sum_{d divides n} d * A053825(d) * phi(n/d), where the totient function phi(n) = A000010(n).
a(n) = Sum_{d divides n} d^2 * (sigma_2(d))^(-1) * J_2(n/d),
a(n) = Sum_{d divides n} d^3 * (sigma_1(d))^(-1) * J_3(n/d), and for k >= 0,
a(n) = Sum_{d divides n} d^4 * (sigma_k(d))^(-1) * J_(k+4)(n/d), where (sigma_k(n))^(-1) denotes the Dirichlet inverse of the divisor sum function sigma_k(n) and J_k(n) denotes the Jordan totient function. (End)

A247343 Moebius transform applied four times to sequence 1,0,0,0,....

Original entry on oeis.org

1, -4, -4, 6, -4, 16, -4, -4, 6, 16, -4, -24, -4, 16, 16, 1, -4, -24, -4, -24, 16, 16, -4, 16, 6, 16, -4, -24, -4, -64, -4, 0, 16, 16, 16, 36, -4, 16, 16, 16, -4, -64, -4, -24, -24, 16, -4, -4, 6, -24, 16, -24, -4, 16, 16, 16, 16, 16, -4, 96, -4, 16, -24, 0, 16, -64, -4, -24, 16, -64
Offset: 1

Views

Author

Enrique Pérez Herrero, Sep 14 2014

Keywords

Comments

Multiplicative because the Moebius transform of a multiplicative sequence is multiplicative. - Andrew Howroyd, Jul 25 2018

Crossrefs

Programs

  • Mathematica
    tau[1, n_Integer]:=1; SetAttributes[tau, Listable];
    tau[k_Integer, n_Integer]:=Plus@@(tau[k-1, Divisors[n]])/; k > 1;
    tau[k_Integer, n_Integer]:=Plus@@(tau[k+1, Divisors[n]]*MoebiusMu[n/Divisors[n]]); k<1;
    Table[tau[-4, n], {n, 70}]
    f[p_, e_] := (-1)^e * Binomial[4, e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
  • PARI
    seq(n)={my(v=vector(n, n, n==1)); for(k=1, 4, v=dirmul(v, vector(#v, n, moebius(n)))); v} \\ Andrew Howroyd, Jul 25 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^4)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Dirichlet g.f.: 1/zeta(s)^4.
Multiplicative with a(p^e) = (-1)^e * binomial(4, e). - Amiram Eldar, Sep 11 2020

A252505 Number of biquadratefree (4th power free) divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 4, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 8, 2, 6, 6, 9
Offset: 1

Views

Author

Geoffrey Critzer, Mar 21 2015

Keywords

Comments

Equivalently, a(n) is the number of divisors of n that are in A046100.
a(n) is also the number of divisors d such that the greatest common square divisor of d and n/d is 1.
The number of divisors d of n such that gcd(d, n/d) is squarefree. - Amiram Eldar, Aug 25 2023

Examples

			a(16) = 4 because there are 4 divisors of 16 that are 4th power free: 1,2,4,8.
a(16) = 4 because there are 4 divisors d of 16 such that the greatest common square divisor of d and 16/d is 1: 1,2,8,16.
		

References

  • Paul J. McCarthy, Introduction to Arithmetical Functions, Springer Verlag, 1986, page 37, Exercise 1.27.

Crossrefs

Cf. A046100 (biquadratefree numbers).
Cf. A034444 (squarefree divisors), A073184 (cubefree divisors).
Cf. A001620.
Also obtained as a Dirichlet convolution of the following pairs: A034444 and A227291, A007427 and A286779, A008966 and A323308, A048691 and A363552, A271102 and A322327, A307445 and A370296, and A018892 and A378214 (conjectured).

Programs

  • Mathematica
    Prepend[Table[Apply[Times, (FactorInteger[n][[All, 2]] /. x_ /; x > 3 -> 3) + 1], {n, 2, 100}], 1]
  • PARI
    isA046100(n) = (n==1) || vecmax(factor(n)[, 2])<4;
    a(n) = {d = divisors(n); sum(i=1, #d, isA046100(d[i]));} \\ Michel Marcus, Mar 22 2015
    
  • PARI
    a(n) = vecprod(apply(x->min(x, 3) + 1, factor(n)[, 2])); \\ Amiram Eldar, Aug 25 2023

Formula

Dirichlet g.f.: zeta(s)^2/zeta(4*s).
Sum_{k=1..n} a(k) ~ 90*n/Pi^4 * (log(n) - 1 + 2*gamma - 360*zeta'(4)/Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 02 2019
a(n) = Sum_{d|n} mu(gcd(d, n/d))^2. - Ilya Gutkovskiy, Feb 21 2020
Multiplicative with a(p^e) = min(e, 3) + 1. - Amiram Eldar, Sep 19 2020
From Antti Karttunen, May 14 2025: (Start)
Following formulas have been generated for this sequence by Sequence Machine:
a(n) = A000005(A058035(n)).
a(n) = Sum_{d|n} A307430(d).
a(n) = Sum_{d|n} A034444(d)*A227291(n/d).
a(n) = Sum_{d|n} A007427(d)*A286779(n/d).
a(n) = Sum_{d|n} A008966(d)*A323308(n/d).
a(n) = Sum_{d|n} A048691(d)*A363552(n/d).
a(n) = Sum_{d|n} A271102(d)*A322327(n/d).
a(n) = Sum_{d|n} A307445(d)*A370296(n/d).
a(n) = Sum_{d|n} A018892(d)*A378214(n/d). [Conjectured]
(End)

A327276 a(n) = Sum_{d|n, d odd} mu(d) * mu(n/d).

Original entry on oeis.org

1, -1, -2, 0, -2, 2, -2, 0, 1, 2, -2, 0, -2, 2, 4, 0, -2, -1, -2, 0, 4, 2, -2, 0, 1, 2, 0, 0, -2, -4, -2, 0, 4, 2, 4, 0, -2, 2, 4, 0, -2, -4, -2, 0, -2, 2, -2, 0, 1, -1, 4, 0, -2, 0, 4, 0, 4, 2, -2, 0, -2, 2, -2, 0, 4, -4, -2, 0, 4, -4, -2, 0, -2, 2, -2, 0, 4, -4, -2
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 15 2019

Keywords

Comments

Dirichlet inverse of A001227.
All terms are 0 or +/- a power of 2. - Robert Israel, Nov 26 2019

Crossrefs

Programs

  • Magma
    [&+[MoebiusMu(d)*MoebiusMu(n div d): d in [a:a in Divisors(n)| IsOdd(a)]]:n in [1..80]]; // Marius A. Burtea, Sep 15 2019
    
  • Maple
    f:= proc(n) local m, d;
      m:= n/2^padic:-ordp(n,2);
      add(numtheory:-mobius(d)*numtheory:-mobius(n/d), d = numtheory:-divisors(m))
    end proc:
    map(f, [$1..100]); # Robert Israel, Nov 26 2019
  • Mathematica
    Table[DivisorSum[n, MoebiusMu[#] MoebiusMu[n/#] &, OddQ[#] &], {n, 1, 79}]
    a[n_] := If[n == 1, n, -Sum[If[d < n, DivisorSum[n/d, Mod[#, 2] &] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 79}]
    f[p_, e_] := Which[e == 1, -1 - Boole[p > 2], e == 2, Boole[p > 2], e > 2, 0]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    a(n)={sumdiv(n, d, if(d%2, moebius(d)*moebius(n/d)))} \\ Andrew Howroyd, Sep 23 2019

Formula

G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} A001227(k) * A(x^k).
Dirichlet g.f.: 1 / (zeta(s)^2 * (1 - 1/2^s)).
a(1) = 1; a(n) = -Sum_{d|n, dA001227(n/d) * a(d).
a(n) = Sum_{d|n} A209229(n/d) * A007427(d).
Multiplicative with a(2^e) = -1 if e = 1, and 0 if e > 1, and a(p^e) = -2 if e = 1, 1 if e = 2, and 0 if e > 2, for an odd prime p. - Amiram Eldar, Oct 25 2020

A341831 Dirichlet g.f.: 1 / zeta(s)^5.

Original entry on oeis.org

1, -5, -5, 10, -5, 25, -5, -10, 10, 25, -5, -50, -5, 25, 25, 5, -5, -50, -5, -50, 25, 25, -5, 50, 10, 25, -10, -50, -5, -125, -5, -1, 25, 25, 25, 100, -5, 25, 25, 50, -5, -125, -5, -50, -50, 25, -5, -25, 10, -50, 25, -50, -5, 50, 25, 50, 25, 25, -5, 250, -5, 25, -50, 0, 25
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2021

Keywords

Comments

Dirichlet inverse of A061200.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[5, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 65}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^5)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (-1)^e * binomial(5, e).
a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_5(n/d) * a(d).

A341832 Dirichlet g.f.: 1 / zeta(s)^6.

Original entry on oeis.org

1, -6, -6, 15, -6, 36, -6, -20, 15, 36, -6, -90, -6, 36, 36, 15, -6, -90, -6, -90, 36, 36, -6, 120, 15, 36, -20, -90, -6, -216, -6, -6, 36, 36, 36, 225, -6, 36, 36, 120, -6, -216, -6, -90, -90, 36, -6, -90, 15, -90, 36, -90, -6, 120, 36, 120, 36, 36, -6, 540, -6, 36, -90, 1, 36
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2021

Keywords

Comments

Dirichlet inverse of A034695.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[6, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 65}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^6)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (-1)^e * binomial(6, e).
a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_6(n/d) * a(d).

A341833 Dirichlet g.f.: 1 / zeta(s)^7.

Original entry on oeis.org

1, -7, -7, 21, -7, 49, -7, -35, 21, 49, -7, -147, -7, 49, 49, 35, -7, -147, -7, -147, 49, 49, -7, 245, 21, 49, -35, -147, -7, -343, -7, -21, 49, 49, 49, 441, -7, 49, 49, 245, -7, -343, -7, -147, -147, 49, -7, -245, 21, -147, 49, -147, -7, 245, 49, 245, 49, 49, -7, 1029, -7, 49
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2021

Keywords

Comments

Dirichlet inverse of A111217.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[7, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 62}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^7)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (-1)^e * binomial(7, e).
a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_7(n/d) * a(d).

A341834 Dirichlet g.f.: 1 / zeta(s)^8.

Original entry on oeis.org

1, -8, -8, 28, -8, 64, -8, -56, 28, 64, -8, -224, -8, 64, 64, 70, -8, -224, -8, -224, 64, 64, -8, 448, 28, 64, -56, -224, -8, -512, -8, -56, 64, 64, 64, 784, -8, 64, 64, 448, -8, -512, -8, -224, -224, 64, -8, -560, 28, -224, 64, -224, -8, 448, 64, 448, 64, 64, -8, 1792
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2021

Keywords

Comments

Dirichlet inverse of A111218.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[8, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 60}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^8)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (-1)^e * binomial(8, e).
a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_8(n/d) * a(d).

A341835 Dirichlet g.f.: 1 / zeta(s)^9.

Original entry on oeis.org

1, -9, -9, 36, -9, 81, -9, -84, 36, 81, -9, -324, -9, 81, 81, 126, -9, -324, -9, -324, 81, 81, -9, 756, 36, 81, -84, -324, -9, -729, -9, -126, 81, 81, 81, 1296, -9, 81, 81, 756, -9, -729, -9, -324, -324, 81, -9, -1134, 36, -324, 81, -324, -9, 756, 81, 756, 81, 81
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2021

Keywords

Comments

Dirichlet inverse of A111219.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[9, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 58}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^9)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (-1)^e * binomial(9, e).
a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_9(n/d) * a(d).
Previous Showing 21-30 of 66 results. Next