cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A372421 Number of steps required to kill the hydra in a version of the hydra game (see comments) where the rightmost head is chopped off in each step and new heads are grown to the left.

Original entry on oeis.org

0, 1, 3, 9, 49, 1230, 757071, 286578628063, 41063655031378934880024, 843111882268046256673111236649909091104560309, 355418823010783945962646271385485944012152784388172734299894340514265378207290093661367905
Offset: 0

Views

Author

Keywords

Comments

The hydra is represented as an ordered tree, initialized to a path with n edges, with the root of the tree at a terminal node of the path. At the k-th step, the leaf (head) that is reached by following the rightmost path from the root is chopped off (equivalently, for this specific hydra, the head to be chopped off is always one of the heads farthest from the root). If only the root remains, the hydra dies and the game ends. If the head chopped off was directly connected to the root, nothing more happens in this step. Otherwise, k new heads are grown from the node two levels closer to the root from the head chopped off (its grandparent).
In this version, the new heads grow to the left of all existing branches of the grandparent, while in A372101, they grow to the right.

Examples

			For n = 3, the first three steps are illustrated in the diagrams below. In these diagrams, "R" denotes the root, "o" internal nodes, "X" the head to be chopped off, and "H" other heads.
.
                     H       H H           H H H
                    /        |/             \|/
R--o--o--X  =>  R--o--X  =>  R--o--X  =>  H--R--X
                                            /
                                           H
.
After this no more heads will grow, so another 6 steps are needed to chop off the remaining heads. The total number of steps is thus a(3) = 3 + 6 = 9.
		

Crossrefs

Partial sums of A370615.
Last element in each row of A372593.
Sequences with similar recurrences: A006894, A007501.

Programs

  • Mathematica
    Block[{n = 0}, NestList[++n + PolygonalNumber[#] &, 0, 11]]

Formula

a(0) = 0; for n >= 1, a(n) = a(n-1)*(a(n-1)+1)/2 + n = A000217(a(n-1)) + n.
a(n) ~ 2 * c^(2^n), where c = 1.2222440178780117503347646365410387156780573376846000146... - Pontus von Brömssen and Vaclav Kotesovec, May 09 2024

A086714 a(1) = 4, a(n) = a(n-1)*(a(n-1) - 1)/2.

Original entry on oeis.org

4, 6, 15, 105, 5460, 14903070, 111050740260915, 6166133456248548335768188155, 19010600900133834176644234577571914951562754277857057935
Offset: 1

Views

Author

Jon Perry, Jul 29 2003

Keywords

Comments

The next two terms, a(10) and a(11), have 111 and 221 digits. - Harvey P. Dale, Jun 10 2011
Interpretation through plane geometry: Start with the a(n)-sided regular polygon, connect all the vertices to create a figure having a(n+1)=A000217(a(n)-1) edges. Repeat to obtain this sequence. - T. D. Noe, May 13 2016
Let y(1) = x1+x2+x3+x4, and define y(n+1) as the plethysm e2[y(n)], where e2 represents the second elementary symmetric function. Then a(n) is y(n) evaluated at x1=x2=x3=x4=1. - Per W. Alexandersson, Jun 06 2020
Each term is the number of coordinate planes in Euclidean space of the dimensionality of the previous term. - Shel Kaphan, Feb 06 2023

Examples

			a(2) = a(1)*(a(1)-1)/2 = 4*3/2 = 6.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1]==4,a[n]==(a[n-1](a[n-1]-1))/2},a[n],{n,10}] (* Harvey P. Dale, Jun 10 2011 *)
  • PARI
    v=vector(10,i,(i==1)*4); for(i=2,10,v[i]=v[i-1]*(v[i-1]-1)/2); v
    
  • PARI
    a086714(upto)={my(a217(n)=n*(n+1)/2,a=4);for(k=1,upto,print1(a,", ");a=a217(a-1))};
    a086714(9) \\ Hugo Pfoertner, Sep 18 2021

Formula

Limit_{n->oo} a(n)^(1/2^n) = 1.280497808541657066685323460209089278782... (see A251794). - Vaclav Kotesovec, Feb 15 2014, updated Dec 09 2014
a(n) ~ 2 * A251794^(2^n). - Vaclav Kotesovec, Dec 09 2014
a(n+1) = binomial(a(n), 2). - Shel Kaphan, Feb 06 2023

A099179 Iterated tetrahedral numbers.

Original entry on oeis.org

2, 4, 20, 1540, 609896980, 37811003218473324699257860, 9009555207802177724984164589516456320805205201729086740415363658290866918420
Offset: 1

Views

Author

Jonathan Vos Post, Nov 15 2004

Keywords

Comments

The next term, a(8), has 228 digits. - Harvey P. Dale, Dec 18 2012

Examples

			a(2) = Tet(2) = the 2nd tetrahedral number = 2*(2+1)*(2+2)/6 = 4;
a(3) = Tet(Tet(2)) = the 4th tetrahedral number = 4*(4+1)*(4+2)/6 = 20;
a(4) = Tet(Tet(Tet(2))) = the 20th tetrahedral number = 20*(20+1)*(20+2)/6 = 1540.
		

Crossrefs

Programs

  • Mathematica
    NestList[(#(#+1)(#+2))/6&,2,6] (* Harvey P. Dale, Dec 18 2012 *)

Formula

a(n)= A000292(a(n-1)). - R. J. Mathar, Jun 09 2008

Extensions

Corrected and extended by R. J. Mathar, Jun 09 2008

A283681 Unique sequence with a(1)=1, a(2)=2, representing an array read by antidiagonals in which the i-th row is this sequence itself multiplied by i.

Original entry on oeis.org

1, 2, 2, 2, 4, 3, 2, 4, 6, 4, 4, 4, 6, 8, 5, 3, 8, 6, 8, 10, 6, 2, 6, 12, 8, 10, 12, 7, 4, 4, 9, 16, 10, 12, 14, 8, 6, 8, 6, 12, 20, 12, 14, 16, 9, 4, 12, 12, 8, 15, 24, 14, 16, 18, 10, 4, 8, 18, 16, 10, 18, 28, 16, 18, 20, 11, 4, 8, 12, 24, 20, 12, 21, 32, 18, 20, 22, 12, 6, 8
Offset: 1

Views

Author

Ivan Neretin, Mar 14 2017

Keywords

Comments

Any integer greater than 1 appears infinitely many times.
In particular, any n appears at the position (n^2 + n)/2. For prime n > 2, this is its first appearance; for composite n, it is not the first.
2 appears at the positions 2, 3, 4, 7, 22, 232, 26797, ... (A007501(n) + 1).
When the sequence is considered as an array, any prime n appears only in the first row (infinitely many times) and in the first column (once).

Examples

			The sequence begins: 1, 2, 2, 2, 4, 3, 2, 4, 6, 4, ...
It represents a rectangular array read by downward antidiagonals. The first row of the array is this very sequence itself. The second row is this sequence multiplied by 2, and so on:
  1  2  2  2  4  3 ...
  2  4  4  4  8  ...
  3  6  6  6  ...
  4  8  8  ...
  5 10  ...
  6 ...
  ...
		

Crossrefs

Cf. A007501 (number of terms produced by the Mathematica code after n iterations).

Programs

  • Mathematica
    Nest[Flatten@Table[#[[n - i]]*i, {n, Length[#] + 1}, {i, n - 1}] &, {1, 2}, 4]

Formula

a((n^2+n)/2)=n.

A099129 Let T(n) be the n-th triangular number n*(n+1)/2; then a(n) = n-th iteration T(T(T(...(n)))).

Original entry on oeis.org

0, 1, 6, 231, 1186570, 347357071281165, 2076895351339769460477611370186681, 143892868802856286225154411591351342616163027795335641150249224655238508171
Offset: 0

Views

Author

Jonathan Vos Post, Nov 14 2004

Keywords

Comments

The next term, a(8), has 162 digits. - Harvey P. Dale, May 29 2013

Examples

			a(3) = 231 because we can write the 3-time iterated expression on T(3), the triangular number sequence n*(n+1)/2, namely: T(T(T(3))) = 231.
		

Crossrefs

Cf. A000217, A007501, A058009 (analog with primes), A097547.

Programs

  • Maple
    a:= n-> (t-> (t@@n)(n))(j-> j*(j+1)/2):
    seq(a(n), n=0..7);  # Alois P. Heinz, Sep 29 2023
  • Mathematica
    Table[Nest[(#(#+1))/2&,n,n],{n,8}] (* Harvey P. Dale, May 29 2013 *)
  • PARI
    a(n) = my(k = n); for (j=1, n, k = k*(k+1)/2;); k; \\ Michel Marcus, Jan 01 2017

Formula

a(n) = A000217^n(n).
The sequence grows like O(n^2^n*1/2^n). This can be derived from the growth O(n^2*1/2) of the triangle sum by iteration. - Hieronymus Fischer, Jan 21 2006

Extensions

Offset changed to 1 by Georg Fischer, Jun 20 2022
a(0)=0 prepended by Alois P. Heinz, Sep 29 2023

A108225 a(0) = 0, a(1) = 2; for n >= 2, a(n) = (a(n-1) + a(n-2))*(a(n-1) - a(n-2) + 1)/2.

Original entry on oeis.org

0, 2, 3, 5, 12, 68, 2280, 2598062, 3374961778893, 5695183504492614029263280, 16217557574922386301420536972254869595782763547562
Offset: 0

Views

Author

N. J. A. Sloane, Jun 16 2005

Keywords

Comments

From a posting by Antreas P. Hatzipolakis to the Yahoo news group "Hyacinthos", circa Jun 10 2005.
The next term has 99 digits. - Harvey P. Dale, Jun 09 2011
a(n) for n>0 gives the rank of the unlabeled binary rooted tree, among those with n+1 leaves, that has the largest rank according to the bijection of Colijn and Plazzotta (2018) between unlabeled binary rooted trees and positive integers. - Noah A Rosenberg, Jun 03 2022

Crossrefs

First differences give A103410.
Cf. A006894.

Programs

  • Maple
    F:=proc(n) option remember; if n <= 1 then RETURN(2*n) fi; (F(n-1)+F(n-2))*(F(n-1)-F(n-2)+1)/2; end;
    a[ -2]:=-2:a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=binomial(a[n-1]+2,2) od: seq(a[n]+2, n=-2..8); # Zerinvary Lajos, Jun 08 2007
  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==2,a[n]==(a[n-1]+a[n-2])(a[n-1]- a[n-2]+1)/2},a[n],{n,15}] (* Harvey P. Dale, Jun 09 2011 *)

Formula

Conjecture: a(n) = A006894(n) + 1. - R. J. Mathar, Apr 23 2007
From J.S. Seneschal, Jul 17 2025 (Start)
a(n) = A000217(a(n)) - A072638(n) = A072638(n-1) + 2.
a(n) = A002658(n-1) + a(n-1) for n > 1. (End)

A129440 a(0)=0, a(1)=1, a(2)=5 and for n>2: a(n) = a(n-1)*(a(n-1) + 1)*(2*a(n-1) + 1)/6.

Original entry on oeis.org

0, 1, 5, 55, 56980, 61667666167030, 78172010815921069181209893626754427513955
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 15 2007

Keywords

Crossrefs

Programs

  • Magma
    [0,1] cat [n le 1 select 5 else Self(n-1)*(Self(n-1)+1)*(2*Self(n-1)+1)/6: n in [1..8]]; // G. C. Greubel, Feb 06 2024
    
  • Mathematica
    Flatten[{0, 1, RecurrenceTable[{a[2] == 5, a[n] == a[n-1]*(a[n-1] + 1)*(2*a[n-1] + 1)/6}, a[n], {n, 8}]}] (* Vaclav Kotesovec, Dec 17 2014 *)
    Join[{0,1},NestList[(#(#+1)(2#+1))/6&,5,5]] (* Harvey P. Dale, Sep 13 2022 *)
  • SageMath
    def a(n): # a = A129440
        if n<3: return (0,1,5)[n]
        else: return a(n-1)*(a(n-1)+1)*(2*a(n-1)+1)/6
    [a(n) for n in range(9)] # G. C. Greubel, Feb 06 2024

Formula

a(n) = A000330(if n<=2 then n else a(n)).
a(n) ~ sqrt(3) * c^(3^n), where c = 1.13701835838072682283814038264701129587627956851233106833915157... . - Vaclav Kotesovec, Dec 17 2014

A145272 First differences of successive iterated triangular numbers with seed 2.

Original entry on oeis.org

1, 3, 15, 210, 26565, 358999410, 64449908117864115, 2076895351339769396027702893296360, 2156747150208372213435450937462080290024600343143329179374709804540
Offset: 1

Views

Author

Greg Huber, Oct 06 2008

Keywords

Comments

Also a triangular number -- follows from the definition of A007501.

Examples

			a(1)=T(2)-2.
a(2)=T(3)-3.
a(3)=T(6)-6.
		

Crossrefs

First differences of successive terms of sequence A007501.
Cf. A000217.

Formula

a(n) = T(x(n-1))-x(n-1) where x(n)=T(x(n-1)) and T(x)=x*(x+1)/2.

A241241 If x is in the sequence then so are x^2 and x(x+1)/2.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 10, 16, 21, 36, 45, 55, 81, 100, 136, 231, 256, 441, 666, 1035, 1296, 1540, 2025, 3025, 3321, 5050, 6561, 9316, 10000, 18496, 26796, 32896, 53361, 65536, 97461, 194481, 222111, 443556, 536130, 840456, 1071225, 1186570, 1679616, 2051325
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 17 2014

Keywords

Crossrefs

Subsequence of A005214; some subsequences: A001146, A007501, A011764, A176594, A173501, A050909.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a241241 n = a241241_list !! (n-1)
    a241241_list = 0 : 1 : f (singleton 2) where
       f s = m : f (insert (a000290 m) $ insert (a000217 m) s')
             where (m, s') = deleteFindMin s
  • Mathematica
    Nest[Flatten[{#,#^2,(#(#+1))/2}]&,{0,1,2},5]//Union (* Harvey P. Dale, Aug 12 2016 *)

Extensions

Initial 0 and 1 prepended by Jon Perry, Apr 17 2014

A059406 a(n) = a(n-1)*(3a(n-1) + 1)/2 with a(1) = 1.

Original entry on oeis.org

1, 2, 7, 77, 8932, 119675402, 21483302825630107, 692298450446589820159203790062227, 718915716736124071145150312487360788973317227637596552328693330407
Offset: 1

Views

Author

Robert G. Wilson v, Jan 29 2001

Keywords

Comments

a(1) = 1, a(n+1) = sum of a(n) numbers beginning with a(n) + 1: a(2) = 2, a(3) = 3+4 = 7, a(4) = 8+9+...13+14 = 77. - Amarnath Murthy, Sep 07 2005

Examples

			a(3) = 7 so a(4) = 7*(3*7 + 1)/2 = 7*22/2 = 77.
		

Crossrefs

Cf. A000326.

Programs

  • Mathematica
    f[n_Integer] := n(3n + 1)/2; NestList[f, 2, 8]
  • PARI
    { a=2/3; for (n = 1, 12, write("b059406.txt", n, " ", a=a*(3*a + 1)/2); ) } \\ Harry J. Smith, Jun 26 2009

Formula

a(n) = A007501(n)/3 = A005449(a(n-1)). - Henry Bottomley, Oct 03 2001
Previous Showing 11-20 of 35 results. Next