cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A309731 Expansion of Sum_{k>=1} k * x^k/(1 - x^k)^3.

Original entry on oeis.org

1, 5, 9, 20, 20, 48, 35, 76, 72, 110, 77, 204, 104, 196, 210, 288, 170, 405, 209, 480, 378, 440, 299, 816, 425, 598, 594, 868, 464, 1200, 527, 1104, 858, 986, 910, 1800, 740, 1216, 1170, 1960, 902, 2184, 989, 1980, 1890, 1748, 1175, 3216, 1470, 2475, 1938, 2704, 1484, 3456, 2090
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 14 2019

Keywords

Comments

Dirichlet convolution of natural numbers (A000027) with triangular numbers (A000217).

Crossrefs

Programs

  • Maple
    with(numtheory): seq(n*(tau(n)+sigma(n))/2, n=1..30); # Ridouane Oudra, Nov 28 2019
  • Mathematica
    nmax = 55; CoefficientList[Series[Sum[k x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DirichletConvolve[j, j (j + 1)/2, j, n], {n, 1, 55}]
    Table[n (DivisorSigma[0, n] + DivisorSigma[1, n])/2, {n, 1, 55}]
  • PARI
    a(n)=sumdiv(n,d,binomial(n/d+1,2)*d); \\ Andrew Howroyd, Aug 14 2019
    
  • PARI
    a(n)=n*(numdiv(n) + sigma(n))/2; \\ Andrew Howroyd, Aug 14 2019
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+1, 2)*x^k/(1-x^k)^2)) \\ Seiichi Manyama, Apr 19 2021

Formula

G.f.: Sum_{k>=1} (k*(k + 1)/2) * x^k/(1 - x^k)^2.
a(n) = n * (d(n) + sigma(n))/2.
Dirichlet g.f.: zeta(s-1) * (zeta(s-2) + zeta(s-1))/2.
a(n) = Sum_{k=1..n} k*tau(gcd(n,k)). - Ridouane Oudra, Nov 28 2019

A362683 Expansion of Sum_{k>0} (1/(1 - k*x^k)^2 - 1).

Original entry on oeis.org

2, 7, 10, 25, 16, 78, 22, 153, 136, 298, 34, 1254, 40, 1214, 2004, 3825, 52, 11385, 58, 20894, 18932, 25006, 70, 150002, 18826, 115274, 199828, 389510, 88, 1334624, 94, 1725281, 2131188, 2360266, 725948, 14878299, 112, 10486958, 22329428, 37317986, 124, 120957336, 130
Offset: 1

Views

Author

Seiichi Manyama, Jun 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^# * (# + 1) &]; Array[a, 50] (* Amiram Eldar, Jul 17 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^d*(d+1));

Formula

a(n) = Sum_{d|n} (n/d)^d * (d+1) = A055225(n) + A359103(n).
If p is prime, a(p) = 1 + 3*p.

A363646 Expansion of Sum_{k>0} (1/(1 - (k*x)^k)^2 - 1).

Original entry on oeis.org

2, 11, 58, 565, 6256, 95762, 1647094, 33752329, 774919720, 20029303030, 570623341234, 17838801038274, 605750213184520, 22226048320465666, 875787902918124708, 36894332593824661521, 1654480523772673528372, 78693266840741507386757
Offset: 1

Views

Author

Seiichi Manyama, Jun 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^n * (# + 1) &]; Array[a, 20] (* Amiram Eldar, Jul 17 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^n*(d+1));

Formula

a(n) = Sum_{d|n} (n/d)^n * (d+1).

A060710 Number of subgroups of dihedral group with 2n elements, counting conjugate subgroups only once, i.e., conjugacy classes of subgroups of the dihedral group.

Original entry on oeis.org

2, 5, 4, 8, 4, 10, 4, 11, 6, 10, 4, 16, 4, 10, 8, 14, 4, 15, 4, 16, 8, 10, 4, 22, 6, 10, 8, 16, 4, 20, 4, 17, 8, 10, 8, 24, 4, 10, 8, 22, 4, 20, 4, 16, 12, 10, 4, 28, 6, 15, 8, 16, 4, 20, 8, 22, 8, 10, 4, 32, 4, 10, 12, 20, 8, 20, 4, 16, 8, 20, 4, 33, 4, 10, 12, 16, 8, 20, 4, 28, 10, 10, 4
Offset: 1

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001

Keywords

Comments

The total number of subgroups, counting conjugate subgroups as distinct, is A007503.
Also the number of subgroups of the group C_n x C_2 (where C_n is the cyclic group with n elements).

Examples

			The dihedral group D6 is isomorphic to the symmetric group S_3 and the conjugacy classes of subgroups are: the trivial group, the whole group, subgroup of order 2 generated by a transposition and the subgroup A_3 generated by the 3-cycles. So a(3) = 4.
		

Crossrefs

A row of A216624.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 3-Mod[#,2]&];
    Array[a, 100] (* Jean-François Alcover, Jun 03 2019 *)
  • PARI
    a(n)=if(n<1, 0, sumdiv(n,d, 3-d%2)) /* Michael Somos, Sep 20 2005 */
    
  • PARI
    { for (n=1, 1000, write("b060710.txt", n, " ", sumdiv(n, d, 3 - d%2)); ) } \\ Harry J. Smith, Jul 10 2009
    
  • Sage
    def A060710(n): return add(3 - int(is_odd(d)) for d in divisors(n))
    [A060710(n) for n in (1..83)] # Peter Luschny, Sep 12 2012

Formula

For even n, a(n) = 2*tau(n) + tau(n/2).
For odd n, a(n) = tau(2n) = 2*tau(n) = 2*A000005(n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 12 2001
From Michael Somos, Sep 20 2005: (Start)
Moebius transform is period 2 sequence [2, 3, ...].
G.f.: Sum_{k>0} x^k*(2+3x^k)/(1-x^(2k)) = Sum_{k>0} 2*x^(2k-1)/(1-x^(2k-1)) + 3*x^(2k)/(1-x^(2k)). (End)
a(n) = 4*tau(n) - tau(2n). - Ridouane Oudra, Jan 16 2023
Sum_{k=1..n} a(k) ~ n*(5*log(n) + 10*gamma - log(2) - 5)/2, where gamma is Euler's constant (A001622). - Amiram Eldar, Jan 21 2023

Extensions

More terms from Vladeta Jovovic, Jul 15 2001

A363628 Expansion of Sum_{k>0} (1/(1-x^k)^3 - 1).

Original entry on oeis.org

3, 9, 13, 24, 24, 47, 39, 69, 68, 96, 81, 153, 108, 165, 170, 222, 174, 292, 213, 342, 302, 363, 303, 523, 375, 492, 474, 615, 468, 766, 531, 783, 686, 810, 726, 1101, 744, 999, 938, 1248, 906, 1402, 993, 1413, 1306, 1437, 1179, 1901, 1314, 1773, 1562, 1938, 1488, 2238, 1698
Offset: 1

Views

Author

Seiichi Manyama, Jun 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 2, 2] &]; Array[a, 50] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+2, 2));

Formula

G.f.: Sum_{k>0} binomial(k+2,2) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+2,2).

A257644 First differences of A264100.

Original entry on oeis.org

1, 3, 8, 14, 24, 32, 48, 58, 77, 93, 115, 129, 163, 179, 207, 235, 271, 291, 336, 358, 406, 442, 482, 508, 576, 610, 656, 700, 762, 794, 874, 908, 977, 1029, 1087, 1139, 1239, 1279, 1343, 1403, 1501, 1545, 1649, 1695, 1785, 1869, 1945, 1995, 2129, 2189
Offset: 0

Views

Author

Keywords

Comments

Cumulative sum of A007503, starting with 1.

Crossrefs

Programs

  • Haskell
    a257644 n = a257644_list !! n
    a257644_list = scanl (+) 1 a007503_list -- Reinhard Zumkeller, Nov 09 2015
    
  • PARI
    alist(n)=my(x);vector(n,k,if(k==1,x=1,x+=sigma(k-1)+numdiv(k-1)))
    
  • Python
    from math import isqrt
    def A257644(n): return (-(s:=isqrt(n))*(s*(s+4)+5)+sum(((q:=n//w)+1)*(q+(w<<1)+4) for w in range(1,s+1))>>1)+1 # Chai Wah Wu, Oct 31 2023

A364063 Expansion of Sum_{k>0} k * x^k / (1 - x^(2*k-1)).

Original entry on oeis.org

1, 3, 4, 5, 8, 7, 8, 14, 10, 11, 18, 13, 17, 22, 16, 17, 26, 26, 20, 30, 22, 23, 42, 25, 30, 38, 28, 38, 42, 31, 32, 55, 44, 35, 50, 37, 38, 65, 50, 41, 63, 43, 56, 62, 46, 58, 66, 62, 50, 81, 52, 53, 100, 55, 56, 78, 58, 74, 94, 74, 68, 86, 80, 65, 90, 67, 82, 124, 70, 71, 98, 86, 92, 117, 76, 77
Offset: 1

Views

Author

Seiichi Manyama, Jul 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[2*n - 1, # + 1 &]/2; Array[a, 100] (* Amiram Eldar, Jul 04 2023*)
  • PARI
    a(n) = sumdiv(2*n-1, d, d+1)/2;

Formula

a(n) = (1/2) * Sum_{d | 2*n-1} (d+1) = A007503(2*n-1)/2.
G.f.: Sum_{k>0} x^k / (1 - x^(2*k-1))^2.
a(n) = A336840(A064216(n)). - Antti Karttunen, Nov 30 2024

A037852 Number of normal subgroups of dihedral group with 2n elements.

Original entry on oeis.org

2, 5, 3, 6, 3, 7, 3, 7, 4, 7, 3, 9, 3, 7, 5, 8, 3, 9, 3, 9, 5, 7, 3, 11, 4, 7, 5, 9, 3, 11, 3, 9, 5, 7, 5, 12, 3, 7, 5, 11, 3, 11, 3, 9, 7, 7, 3, 13, 4, 9, 5, 9, 3, 11, 5, 11, 5, 7, 3, 15, 3, 7, 7, 10, 5, 11, 3, 9, 5, 11, 3, 15, 3, 7, 7
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 04 2001

Keywords

Comments

When n is an odd prime a(n) = 3.
Write D_{2n} as , then the subgroups are of the form for d|n or for d|n and 0 <= r < d. The normal subgroups are for d|n and for d|gcd(n,2) and 0 <= r < d. There are d(n) normal subgroups of the first type and sigma(gcd(n,2)) normal subgroups of the second type. - Jianing Song, Jul 21 2022

Examples

			a(4) = 6 since D_8 = <a, x | a^4 = x^2 = 1, x*a*x = a^(-1)> has 6 normal subgroups: {e}, {e,a^2}, {e,a,a^2,a^3}, {e,a^2,x,a^2*x}, {e,a^2,a*x,a^3*x} and D_8. The 4 subgroups {e,x}, {e,a*x}, {e,a^2*x} and {e,a^3*x} are not normal. - _Jianing Song_, Jul 21 2022
		

Crossrefs

Programs

  • PARI
    a(n) = numdiv(n) + 2 + (-1)^n \\ Michel Marcus, Jul 30 2013

Formula

a(n) = d(n) + 2 + (-1)^n. - Paul Boddington, Feb 02 2004
a(n) = A000005(n) + A176040(n). - Michel Marcus, Aug 19 2015

Extensions

More terms from Michel Marcus, Jul 30 2013

A083573 Maximal number of subgroups in a non-Abelian group with n elements, or zero if there are no non-Abelian groups of order n.

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 0, 10, 0, 8, 0, 16, 0, 10, 0, 35, 0, 28, 0, 22, 10, 14, 0, 54, 0, 16, 19, 28, 0, 28, 0, 158, 0, 20, 0, 78, 0, 22, 16, 76, 0, 36, 0, 40, 0, 26, 0, 236, 0, 64, 0, 46, 0, 212, 14, 98, 22, 32, 0, 80, 0, 34, 36, 937, 0, 52, 0, 58, 0, 52, 0, 272
Offset: 1

Views

Author

Victoria A. Sapko (vsapko(AT)canes.gsw.edu), Jun 13 2003

Keywords

Comments

A group G is non-Abelian iff there are two elements x,y such that xy != yx. Then and are nontrivial subgroups whose order divides the order of G which therefore cannot be prime (neither the square of a prime: there are only two nonisomorphic groups of that order which are both abelian; see A051532 for more). This also implies that a(n) >= 2+2+2 = 6 for all nonzero elements of this sequence and for even n=2m>4 there is the non-Abelian dihedral group D_m with A007503(m)=sigma(m)+tau(m)=A000005(m)+A000203(m), providing a lower bound. - M. F. Hasler, Dec 03 2007

Examples

			a(6)=6 because the only non-Abelian group with 6 elements is S_3 with 6 subgroups.
		

Crossrefs

Programs

  • GAP
    A083573 := function(n) local max, grp, i; max := 0; for i in [1..NumberSmallGroups(n)] do grp := SmallGroup(n, i); if (not IsAbelian(grp)) then max := Maximum(max, Sum(ConjugacyClassesSubgroups(grp), Size)); fi; od; return max; end; # Eric M. Schmidt, Sep 07 2012

Formula

a(n) = 0 <=> A060689(n)=0 <=> n is in A051532 ; otherwise a(n) >= 6 and a(2n) >= A007503(n). - M. F. Hasler, Dec 03 2007

Extensions

More terms from Eric M. Schmidt, Sep 07 2012

A105331 Numbers of the form 2^n*(2^(n+1)+2n+1) where 2^(n+1)+2n+1 is prime.

Original entry on oeis.org

3, 14, 52, 184, 656, 34688, 2118656, 134438912, 537346048, 9007202811510784, 2417851639318318791262208, 633825300114170432793740312576, 2535301200456572518883997515776
Offset: 1

Views

Author

Farideh Firoozbakht, Apr 28 2005

Keywords

Comments

This sequence is a subsequence of A083874 (see A083874 & A105330).
This is because these numbers satisfy tau(n) + sigma(n) = 2n when n = 2^k * p with p is prime; for instance tau(14) + sigma(14) = 4 + 24 = 28 = 2 x 14. [See References.] - Bernard Schott, Apr 07 2017

Examples

			9007202811510784 is in the sequence because 9007202811510784 = 2^26*(2^27 + 2*26 + 1) and 2^27 + 2*26 + 1 is prime.
		

References

  • J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, Problème 723, page 93.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[2^(m + 1) + 2m + 1], Print[2^m(2^(m + 1) + 2m + 1)]], {m, 0, 110}]
    2^# (2^(#+1)+2#+1)&/@Select[Range[0,100],PrimeQ[2^(#+1)+2#+1]&] (* Harvey P. Dale, Nov 13 2012 *)

Formula

a(n) = 2^A105330(n)*(2^(A105330(n)+1) + 2*A105330(n) + 1). - Bernard Schott, Apr 07 2017
Previous Showing 11-20 of 40 results. Next