cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 83 results. Next

A014663 Primes p such that multiplicative order of 2 modulo p is odd.

Original entry on oeis.org

7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 263, 271, 311, 337, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 601, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919, 937, 967, 983, 991, 1031, 1039, 1063
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Or, primes p which do not divide 2^n+1 for any n.
The possibility n=0 in the above rules out A072936(1)=2; apart from this, a(n)=A072936(n+1). - M. F. Hasler, Dec 08 2007
The order of 2 mod p is odd iff 2^k=1 mod p, where p-1=2^s*k, k odd. - M. F. Hasler, Dec 08 2007
Has density 7/24 (Hasse).
From Jianing Song, Jun 27 2025: (Start)
The multiplicative order of 2 modulo a(n) is A139686(n).
Contained in primes congruent to 1 or 7 modulo 8 (primes p such that 2 is a quadratic residue modulo p, A001132), and contains primes congruent to 7 modulo 8 (A007522). (End)

References

  • Christopher Adler and Jean-Paul Allouche (2022), Finite self-similar sequences, permutation cycles, and music composition, Journal of Mathematics and the Arts, 16:3, 244-261, DOI: 10.1080/17513472.2022.2116745.
  • P. Moree, Appendix to V. Pless et al., Cyclic Self-Dual Z_4 Codes, Finite Fields Applic., vol. 3 pp. 48-69, 1997.

Crossrefs

Cf. Complement in primes of A091317.
Cf. A001132, A007522, A040098, A045315, A049564, A139686 (the actual multiplicative orders).
Cf. Essentially the same as A072936 (except for missing leading term 2).
Cf. other bases: this sequence (base 2), A385220 (base 3), A385221 (base 4), A385192 (base 5), A163183 (base -2), A385223 (base -3), A385224 (base -4), A385225 (base -5).

Programs

  • Mathematica
    okQ[p_] := OddQ[MultiplicativeOrder[2, p]];
    Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Nov 23 2024 *)
  • PARI
    isA014663(p)=1==Mod(1,p)<<((p-1)>>factor(p-1,2)[1,2])
    listA014663(N=1000)=forprime(p=3,N,isA014663(p)&print1(p", ")) \\ M. F. Hasler, Dec 08 2007
    
  • PARI
    lista(nn) = {forprime(p=3, nn, if (znorder(Mod(2, p)) % 2, print1(p, ", ")););} \\ Michel Marcus, Feb 06 2015

Extensions

Edited by M. F. Hasler, Dec 08 2007
More terms from Max Alekseyev, Feb 06 2010

A005122 Numbers k such that 8k - 1 is prime.

Original entry on oeis.org

1, 3, 4, 6, 9, 10, 13, 16, 19, 21, 24, 25, 28, 30, 33, 34, 39, 45, 46, 48, 54, 55, 58, 60, 61, 63, 75, 76, 79, 81, 90, 91, 93, 94, 103, 105, 108, 111, 114, 115, 121, 123, 124, 129, 130, 133, 136, 138, 144, 153, 154, 160, 163, 165, 166, 171, 175, 178, 180
Offset: 1

Views

Author

Keywords

Comments

Corresponding primes are listed in A007522. - Altug Alkan, Dec 10 2015

Crossrefs

Cf. A007522.

Programs

A127581 Smallest prime of the form k*2^n - 1, for k >= 2.

Original entry on oeis.org

2, 3, 7, 23, 31, 127, 127, 383, 1279, 3583, 5119, 6143, 8191, 73727, 81919, 131071, 131071, 524287, 524287, 14680063, 14680063, 14680063, 109051903, 109051903, 654311423, 738197503, 738197503, 2147483647, 2147483647, 2147483647
Offset: 0

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Examples

			a(3)=23 because 23 = 3*2^3 - 1 is prime.
a(4)=31 because 31 = 2*2^4 - 1 is prime.
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 1; While[ !PrimeQ[k 2^n + 2^n - 1], k++ ]; AppendTo[a, k 2^n + 2^n - 1], {n, 0, 50}]; a

Formula

a(n) << 37^n by Xylouris' improvement to Linnik's theorem. - Charles R Greathouse IV, Dec 10 2013

Extensions

Edited by Don Reble, Jun 11 2007

A127586 Smallest strictly positive integer k such that (k+1)*2^n-1 is prime.

Original entry on oeis.org

2, 1, 1, 2, 1, 3, 1, 2, 4, 6, 4, 2, 1, 8, 4, 3, 1, 3, 1, 27, 13, 6, 25, 12, 38, 21, 10, 15, 7, 3, 1, 9, 4, 5, 2, 23, 11, 5, 2, 24, 23, 11, 5, 2, 13, 6, 19, 9, 4, 18, 10
Offset: 0

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Comments

The associated prime number list is (k+1)*2^n-1 = 2, 3, 7, 23, 31, 127, 127, 383, 1279, 3583, 5119, 6143, 8191, 73727 for n=0,1,2,3,4,... - R. J. Mathar, Jan 22 2007

Crossrefs

Programs

  • Maple
    A127586 := proc(n) local k; k:=1 ; while true do if isprime( (k+1)*2^n-1) then RETURN(k) ; fi ; k := k+1 ; od ; end: for n from 0 to 100 do printf("%d, ",A127586(n)) ; od ; # R. J. Mathar, Jan 22 2007
  • Mathematica
    a = {}; Do[k = 1; While[ ! PrimeQ[k 2^n + 2^n - 1], k++ ]; AppendTo[a, k], {n, 0, 50}]; a

Formula

a(n)=A127587(n) if n is not in A000043. - R. J. Mathar, Jan 22 2007
a(n) << 19^n by Xylouris' improvement to Linnik's theorem. - Charles R Greathouse IV, Dec 10 2013

A127587 Smallest nonnegative integer k such that (k+1)*2^n-1 is prime.

Original entry on oeis.org

2, 1, 0, 0, 1, 0, 1, 0, 4, 6, 4, 2, 1, 0, 4, 3, 1, 0, 1, 0, 13, 6, 25, 12, 38, 21, 10, 15, 7, 3, 1, 0, 4, 5, 2, 23, 11, 5, 2, 24, 23, 11, 5, 2, 13, 6, 19, 9, 4, 18, 10, 20, 19, 9, 4, 2, 31, 15, 7, 3, 1, 0, 11, 5, 2, 66, 62, 42, 62, 39, 19, 9, 4, 14, 11, 5, 2, 54, 46, 29, 14, 29, 14, 63, 31, 15, 7
Offset: 0

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Comments

The associated prime number list is (k+1)*2^n-1 = 2,3,3,7,31,31,127,127,1279,3583,5119,6143,... for n=0,1,2,3,4,... - R. J. Mathar, Jan 22 2007

Crossrefs

Programs

  • Maple
    A127587 := proc(n) local k; k:=0 ; while true do if isprime( (k+1)*2^n-1) then RETURN(k) ; fi ; k := k+1 ; od ; end: for n from 0 to 100 do printf("%d, ",A127587(n)) ; od ; # R. J. Mathar, Jan 22 2007
  • Mathematica
    a = {}; Do[k = 0; While[ ! PrimeQ[k 2^n + 2^n - 1], k++ ]; AppendTo[a, k], {n, 0, 50}]; a

Formula

a[A000043(j)]=0 for j=1,2,3,4,... - R. J. Mathar, Jan 22 2007
a(n) = A085427(n) - 1. - Filip Zaludek, Dec 16 2016

Extensions

More terms from R. J. Mathar, Jan 22 2007

A127589 Primes of the form 16k + 5.

Original entry on oeis.org

5, 37, 53, 101, 149, 181, 197, 229, 277, 293, 373, 389, 421, 613, 661, 677, 709, 757, 773, 821, 853, 997, 1013, 1061, 1093, 1109, 1237, 1301, 1381, 1429, 1493, 1621, 1637, 1669, 1733, 1861, 1877, 1973, 2053, 2069, 2213, 2293, 2309, 2341, 2357, 2389, 2437
Offset: 1

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Comments

All terms are the sum of two squares.
Primes with least significant digit 5 in hexadecimal. - Alonso del Arte, Oct 21 2022

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[16n + 5], AppendTo[a, 16n + 5]], {n, 0, 200}]; a
    Select[16Range[200] + 5, PrimeQ] (* Alonso del Arte, Oct 21 2022 *)
  • PARI
    select(x->(x%16)==5, primes(500)) \\ Michel Marcus, Oct 24 2022

Extensions

Invalid comment removed by Zak Seidov, Jul 22 2010

A035089 Smallest prime of form 2^n*k + 1.

Original entry on oeis.org

2, 3, 5, 17, 17, 97, 193, 257, 257, 7681, 12289, 12289, 12289, 40961, 65537, 65537, 65537, 786433, 786433, 5767169, 7340033, 23068673, 104857601, 167772161, 167772161, 167772161, 469762049, 2013265921, 3221225473, 3221225473, 3221225473, 75161927681
Offset: 0

Views

Author

Keywords

Comments

a(n) is the smallest prime p such that the multiplicative group modulo p has a subgroup of order 2^n. - Joerg Arndt, Oct 18 2020

Crossrefs

Analogous case is A034694. Fermat primes (A019434) are a subset. See also Fermat numbers A000215.

Programs

  • Mathematica
    a = {}; Do[k = 0; While[ !PrimeQ[k 2^n + 1], k++ ]; AppendTo[a, k 2^n + 1], {n, 1, 50}]; a (* Artur Jasinski *)
  • PARI
    a(n)=for(k=1,9e99,if(ispseudoprime(k<Charles R Greathouse IV, Jul 06 2011

Extensions

a(0) from Joerg Arndt, Jul 06 2011

A139487 Numbers k such that 8k + 7 is prime.

Original entry on oeis.org

0, 2, 3, 5, 8, 9, 12, 15, 18, 20, 23, 24, 27, 29, 32, 33, 38, 44, 45, 47, 53, 54, 57, 59, 60, 62, 74, 75, 78, 80, 89, 90, 92, 93, 102, 104, 107, 110, 113, 114, 120, 122, 123, 128, 129, 132, 135, 137, 143, 152, 153, 159, 162, 164, 165, 170, 174, 177, 179, 180, 183, 185
Offset: 1

Views

Author

Artur Jasinski, Apr 23 2008

Keywords

Comments

For numbers k such that:
8k+1 is prime see A005123, primes see A007519;
8k+3 is prime see A005124, primes see A007520;
8k+5 is prime see A105133, primes see A007521;
8k+7 is prime see A139487, primes see A007522.
8k + 7 divides A000225(4k+3). - Jinyuan Wang, Mar 08 2019

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | IsPrime(8*n+7)]; // Vincenzo Librandi, Jun 25 2014
    
  • Mathematica
    a = {}; Do[If[PrimeQ[8 n + 7], AppendTo[a, n]], {n, 0, 300}]; a
    Select[Range[0,200],PrimeQ[8#+7]&] (* Harvey P. Dale, Oct 10 2012 *)
  • PARI
    is(n)=isprime(8*n+7) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = (A007522(n) - 7)/8, n >= 1.

A141164 Numbers having exactly 1 divisor of the form 8*k + 7.

Original entry on oeis.org

7, 14, 15, 21, 23, 28, 30, 31, 35, 39, 42, 45, 46, 47, 49, 55, 56, 60, 62, 69, 70, 71, 75, 77, 78, 79, 84, 87, 90, 91, 92, 93, 94, 95, 98, 103, 110, 111, 112, 115, 117, 120, 124, 127, 133, 138, 140, 141, 142, 143, 147, 150, 151, 154, 155, 156, 158, 159, 167, 168, 174, 180, 182, 183, 184, 186, 188, 190, 191, 196, 199
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 26 2011

Keywords

Examples

			a(1) = A188226(1) = 7.
		

Crossrefs

Numbers having m divisors of the form 8*k + i: A343107 (m=1, i=1), A343108 (m=0, i=3), A343109 (m=0, i=5), A343110 (m=0, i=7), A343111 (m=2, i=1), A343112 (m=1, i=3), A343113 (m=1, i=5), this sequence (m=1, i=7).
Indices of 1 in A188172.
A007522 is a subsequence.
Cf. A004771.

Programs

  • Haskell
    import Data.List (elemIndices)
    a141164 n = a141164_list !! (n-1)
    a141164_list = map succ $ elemIndices 1 $ map a188172 [1..]
    
  • Mathematica
    okQ[n_] := Length[Select[Divisors[n] - 7, Mod[#, 8] == 0 &]] == 1; Select[Range[200], okQ]
  • PARI
    res(n, a, b) = sumdiv(n, d, (d%a) == b)
    isA141164(n) = (res(n, 8, 7) == 1) \\ Jianing Song, Apr 06 2021

Formula

A188172(a(n)) = 1.

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016
Previous Showing 21-30 of 83 results. Next