cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A153385 Number of primes <= Fibonacci(Fibonacci(n)) = pi(A007570(n)).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 8, 51, 1329, 393790, 5670112879, 43416847208976911
Offset: 0

Views

Author

Harry J. Smith, Dec 25 2008

Keywords

Examples

			a(7) = 51 because Fibonacci(7) = 13, Fibonacci(13) = 233 and there are 51 primes <= 233.
		

Crossrefs

Programs

  • Magma
    [0] cat [#PrimesUpTo(Fibonacci(Fibonacci(n))): n in [1..9]]; // Vincenzo Librandi, Aug 02 2015
  • Mathematica
    PrimePi@# & /@ (Fibonacci@Fibonacci@# & /@ Range@10) (* Robert G. Wilson v, Feb 17 2009 *)
  • XiCalc
    Pi(Fib(Fib(n)));
    

Formula

a(n) = pi(Fibonacci(Fibonacci(n))) = A000720(A007570(n)).
a(n) = A054782(A000045(n)). - Amiram Eldar, Sep 03 2024

Extensions

a(11) calculated using Kim Walisch's primecount and added by Amiram Eldar, Sep 03 2024

A005371 a(n) = L(L(n)), where L(n) are Lucas numbers A000032.

Original entry on oeis.org

3, 1, 4, 7, 29, 199, 5778, 1149851, 6643838879, 7639424778862807, 50755107359004694554823204, 387739824812222466915538827541705412334749, 19679776435706023589554719270187913247121278789615838446937339578603
Offset: 0

Views

Author

Keywords

References

  • T. Koshy (2001), Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 511-516
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [ Lucas(Lucas(n)): n in [0..20]]; // Vincenzo Librandi, Apr 16 2011
    
  • Maple
    L:= n-> (<<0|1>, <1|1>>^n. <<2,1>>)[1,1]:
    a:= n-> L(L(n)):
    seq(a(n), n=0..14);  # Alois P. Heinz, Jun 01 2016
  • Mathematica
    l[n_]:= l[n]= l[n-1] + l[n-2]; l[0]= 2; l[1]= 1; Table[l[l[n]], {n,0,12}]
    LucasL[LucasL[Range[0, 15]]] (* G. C. Greubel, Dec 21 2017 *)
  • PARI
    {lucas(n) = fibonacci(n+1) + fibonacci(n-1)};
    for(n=0,15, print1(lucas(lucas(n)), ", ")) \\ G. C. Greubel, Dec 21 2017
    
  • SageMath
    [lucas_number2(lucas_number2(n, 1,-1),1,-1) for n in range(15)] # G. C. Greubel Nov 14 2022

Extensions

More terms from Mario Catalani (mario.catalani(AT)unito.it), Mar 14 2003
Offset changed Feb 28 2007

A263101 a(n) = F(F(n)) mod F(n), where F = Fibonacci = A000045.

Original entry on oeis.org

0, 0, 1, 2, 0, 5, 12, 5, 33, 5, 1, 0, 232, 233, 55, 5, 1596, 2563, 1, 5, 987, 10946, 28656, 0, 0, 75025, 189653, 89, 1, 6765, 1, 5, 6765, 1, 9227460, 0, 24157816, 1, 63245985, 5, 1, 267914275, 433494436, 4181, 1134896405, 1, 2971215072, 0, 7778741816, 75025
Offset: 1

Views

Author

Alois P. Heinz, Oct 09 2015

Keywords

Crossrefs

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
              `if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
    a:= n-> p(<<0|1>, <1|1>>, F(n)$2)[1, 2]:
    seq(a(n), n=1..50);
  • Mathematica
    F[n_] := MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
    p[M_, n_, k_] := Mod[#, k]& /@ If[n == 0, {{1, 0}, {0, 1}}, If[EvenQ[n], MatrixPower[p[M, n/2, k], 2], p[M, n - 1, k].M]];
    a[n_] := p[{{0, 1}, {1, 1}}, F[n], F[n]][[1, 2]];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 29 2024, after Alois P. Heinz *)
  • PARI
    alist(nn)= my(f=fibonacci); [ f(f(n))%f(n) |n<-[1..nn] ]; \\ Ruud H.G. van Tol, Dec 13 2024

Formula

a(n) = A007570(n) mod A000045(n).

A263112 a(n) = F(F(n)) mod n, where F = Fibonacci = A000045.

Original entry on oeis.org

0, 1, 1, 2, 0, 3, 2, 2, 1, 5, 1, 0, 8, 13, 10, 2, 12, 15, 5, 10, 1, 1, 1, 0, 0, 25, 1, 2, 5, 15, 27, 2, 10, 33, 20, 0, 1, 1, 34, 10, 40, 21, 18, 2, 10, 1, 1, 0, 1, 25, 1, 2, 16, 21, 5, 26, 37, 1, 7, 0, 33, 27, 1, 2, 40, 21, 5, 2, 1, 15, 1, 0, 46, 1, 25, 2, 68
Offset: 1

Views

Author

Alois P. Heinz, Oct 09 2015

Keywords

Crossrefs

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
              `if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
    a:= n-> p(<<0|1>, <1|1>>, F(n), n)[1, 2]:
    seq(a(n), n=1..80);
  • Mathematica
    F[n_] := MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
    p[M_, n_, k_] := Mod[#, k]& /@ If[n == 0, {{1, 0}, {0, 1}}, If[EvenQ[n], MatrixPower[p[M, n/2, k], 2], p[M, n - 1, k].M]];
    a[n_] := p[{{0, 1}, {1, 1}}, F[n], n][[1, 2]];
    Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Oct 29 2024, after Alois P. Heinz *)

Formula

a(n) = A007570(n) mod n.

A058051 a(n) = F(F(F(n))), where F is a Fibonacci number (A000045).

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 10946, 2211236406303914545699412969744873993387956988653
Offset: 0

Views

Author

Robert G. Wilson v, Nov 18 2000

Keywords

Comments

a(8) = 1695216512..7257812353 has 2288 decimal digits and a(9) = 3525796792..4659808333 has 1191833 decimal digits. - Alois P. Heinz, Nov 11 2015

Crossrefs

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    a:= n-> F(F(F(n))):
    seq(a(n), n=0..7);  # Alois P. Heinz, Nov 11 2015
  • Mathematica
    F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n - 1] + F[n - 2]; Table[ F[ F[ F[n] ] ], {n, 0, 10} ]
    Table[Nest[Fibonacci,n,3],{n,0,8}] (* Harvey P. Dale, Feb 09 2018 *)

Extensions

Offset corrected by Alois P. Heinz, Nov 11 2015

A127787 Numbers n such that F(n) divides F(F(n)), where F(n) is a Fibonacci number.

Original entry on oeis.org

1, 2, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, 125, 144, 168, 180, 192, 216, 240, 288, 300, 324, 336, 360, 384, 432, 480, 504, 540, 552, 576, 600, 612, 625, 648, 660, 672, 684, 720, 768, 840, 864, 900, 960, 972, 1008, 1080, 1104, 1152, 1176, 1200, 1224, 1296, 1320
Offset: 1

Views

Author

Alexander Adamchuk, May 13 2007

Keywords

Comments

It is known that for n > 2 Fibonacci(n) divides Fibonacci(m) if and only if n divides m. Therefore if the term "2" is omitted this is identical to A023172, which see for further information. - Stefan Steinerberger, Dec 20 2007

Examples

			12 is a term because F(12) = 144 divides F(F(12)) = F(144) = 555565404224292694404015791808.
		

Crossrefs

Cf. A023172. Cf. also A000045 = Fibonacci(n), A007570 = F(F(n)), where F is a Fibonacci number, A023172 = numbers n such that n divides Fibonacci(n).
Cf. A263101.

Programs

  • Maple
    with(combinat): a:=proc(n) if type(fibonacci(fibonacci(n))/fibonacci(n), integer) then n else end if end proc: seq(a(n),n=1..40); # Emeric Deutsch, Aug 24 2007

Extensions

Edited by N. J. A. Sloane, Dec 22 2007

A274996 a(n) = F(F(F(n))) mod F(F(n)), where F = Fibonacci = A000045.

Original entry on oeis.org

0, 0, 0, 1, 0, 5, 232, 987, 1, 5, 1, 0, 2211236406303914545699412969744873993387956988652, 2211236406303914545699412969744873993387956988653, 139583862445
Offset: 1

Views

Author

Alois P. Heinz, Nov 11 2016

Keywords

Crossrefs

Programs

  • Maple
    F:= proc(n) local r, M, p; r, M, p:=
          <<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
          do if irem(p, 2, 'p')=1 then r:=
            `if`(nargs=1, r.M, r.M mod args[2]) fi;
             if p=0 then break fi; M:=
            `if`(nargs=1, M.M, M.M mod args[2])
          od; r[1, 2]
        end:
    a:= n-> (h-> F(h$2))(F(F(n))):
    seq(a(n), n=1..15);

Formula

a(n) = A058051(n) mod A007570(n).

A005370 a(n) = Fibonacci(Fibonacci(n+1) + 1).

Original entry on oeis.org

1, 1, 2, 3, 8, 34, 377, 17711, 9227465, 225851433717, 2880067194370816120, 898923707008479989274290850145, 3577855662560905981638959513147239988861837901112, 4444705723234237498833973519982908519933430818636409166351397897095281987215864
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Fibonacci(Fibonacci(n+1)+1): n in [0..17]]; // Vincenzo Librandi, Apr 20 2011
    
  • Maple
    with(combinat, fibonacci): A005370 := n -> fibonacci(fibonacci(n+1)+1);
    # second Maple program:
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    a:= n-> F(F(n+1)+1):
    seq(a(n), n=1..14);  # Alois P. Heinz, Nov 05 2015
  • Mathematica
    Table[Fibonacci[Fibonacci[n+1] +1], {n, 0, 14}] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • SageMath
    [fibonacci(fibonacci(n+1) +1) for n in range(15)] # G. C. Greubel, Nov 14 2022

Extensions

More terms from David W. Wilson
Description corrected by Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 17 2002

A111425 a(n) = tribonacci(Fibonacci(n)).

Original entry on oeis.org

0, 0, 0, 1, 1, 4, 24, 504, 66012, 181997601, 65720971788709, 65431225571591367370292, 23523635785731871586396890786299881280, 8419860898569880503664421048610377961601349941695806840602396
Offset: 0

Views

Author

Jonathan Vos Post, Nov 13 2005

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^((<<0|1>, <1|1>>^n)[1, 2]))[1, 3]:
    seq(a(n), n=0..14);  # Alois P. Heinz, Aug 09 2018

Formula

a(n) = A000073(A000045(n)).

A111431 a(n) = Fibonacci(tribonacci(n)).

Original entry on oeis.org

0, 0, 1, 1, 1, 3, 13, 233, 46368, 701408733, 37889062373143906, 6161314747715278029583501626149, 818706854228831001753880637535093596811413714795418360007
Offset: 0

Views

Author

Jonathan Vos Post, Nov 13 2005

Keywords

Examples

			a(0) = Fibonacci(tribonacci(0)) = A000045(A000073(0)) = A000045(0) = 0.
a(1) = Fibonacci(tribonacci(1)) = A000045(A000073(1)) = A000045(0) = 0.
a(2) = Fibonacci(tribonacci(2)) = A000045(A000073(2)) = A000045(1) = 1.
a(3) = Fibonacci(tribonacci(3)) = A000045(A000073(3)) = A000045(1) = 1.
a(4) = Fibonacci(tribonacci(4)) = A000045(A000073(4)) = A000045(2) = 1.
a(5) = Fibonacci(tribonacci(5)) = A000045(A000073(5)) = A000045(4) = 3.
a(6) = Fibonacci(tribonacci(6)) = A000045(A000073(6)) = A000045(7) = 13.
a(7) = Fibonacci(tribonacci(7)) = A000045(A000073(7)) = A000045(13) = 233.
a(8) = A000045(A000073(8)) = A000045(24) = 46368.
a(9) = A000045(A000073(9)) = A000045(44) = 701408733.
a(10) = A000045(A000073(10)) = A000045(81) = 37889062373143906.
		

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^((<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1, 3]))[1, 2]:
    seq(a(n), n=0..13);  # Alois P. Heinz, Aug 09 2018
  • Mathematica
    Fibonacci/@LinearRecurrence[{1,1,1},{0,0,1},15] (* Harvey P. Dale, Jan 04 2013 *)

Formula

a(n) = A000045(A000073(n)).
Showing 1-10 of 21 results. Next