cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 71 results. Next

A267682 a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3, with initial terms 1, 1, 4, 8.

Original entry on oeis.org

1, 1, 4, 8, 15, 23, 34, 46, 61, 77, 96, 116, 139, 163, 190, 218, 249, 281, 316, 352, 391, 431, 474, 518, 565, 613, 664, 716, 771, 827, 886, 946, 1009, 1073, 1140, 1208, 1279, 1351, 1426, 1502, 1581, 1661, 1744, 1828, 1915, 2003, 2094, 2186, 2281, 2377, 2476
Offset: 0

Views

Author

Robert Price, Jan 19 2016

Keywords

Comments

Also, total number of ON (black) cells after n iterations of the "Rule 201" elementary cellular automaton starting with a single ON (black) cell.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A267679.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

  • Mathematica
    rule=201; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc,k]],{k,1,rows}] (* Number of Black cells through stage n *)
    LinearRecurrence[{2, 0, -2, 1}, {1, 1, 4, 8}, 60] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    Vec((1-x+2*x^2+2*x^3)/((1-x)^3*(1+x)) + O(x^100)) \\ Colin Barker, Jan 19 2016
    
  • Python
    print([n*(n-1)+n//2+1 for n in range(51)]) # Karl V. Keller, Jr., Jul 14 2021

Formula

G.f.: (1 - x + 2*x^2 + 2*x^3) / ((1-x)^3*(1+x)). - Colin Barker, Jan 19 2016
a(n) = n*(n-1) + floor(n/2) + 1. - Karl V. Keller, Jr., Jul 14 2021
E.g.f.: (exp(x)*(2 + x + 2*x^2) - sinh(x))/2. - Stefano Spezia, Jul 16 2021

Extensions

Edited by N. J. A. Sloane, Jul 25 2018, replacing definition with simpler formula provided by Colin Barker, Jan 19 2016.

A064038 Numerator of average number of swaps needed to bubble sort a string of n distinct letters.

Original entry on oeis.org

0, 1, 3, 3, 5, 15, 21, 14, 18, 45, 55, 33, 39, 91, 105, 60, 68, 153, 171, 95, 105, 231, 253, 138, 150, 325, 351, 189, 203, 435, 465, 248, 264, 561, 595, 315, 333, 703, 741, 390, 410, 861, 903, 473, 495, 1035, 1081, 564, 588, 1225, 1275, 663, 689, 1431, 1485, 770
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2001

Keywords

Comments

Denominators are given by the simple periodic sequence [1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, ...] (= A014695) thus we get an average of 1/2, 3/2, 3, 5, 15/2, 21/2, 14, 18, etc. swappings required to bubble sort a string of 2, 3, 4, 5, 6, ... letters.

References

  • E. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms, Prentice-Hall, 1977, section 7.1, p. 287.

Crossrefs

Programs

  • Magma
    [Numerator(n*(n-1)/4): n in [1..100]]; // G. C. Greubel, Sep 21 2018
  • Maple
    [seq(numer((n*(n-1))/4), n=1..120)];
  • Mathematica
    f[n_] := Numerator[n (n - 1)/4]; Array[f, 56]
    f[n_] := n/GCD[n, 4]; Array[f[#] f[# - 1] &, 56]
    LinearRecurrence[{3,-6,10,-12,12,-10,6,-3,1},{0,1,3,3,5,15,21,14,18},80] (* Harvey P. Dale, Jan 23 2023 *)
  • PARI
    vector(100, n, numerator(n*(n-1)/4)) \\ G. C. Greubel, Sep 21 2018
    

Formula

a(n) = numerator(A001809(n)/(n!)).
a(4n) = A033991(n).
a(4n+1) = A007742(n).
a(4n+2) = A014634(n).
a(4n+3) = A033567(n+1).
a(n+1) = A061041(8*n-4). - Paul Curtz, Jan 03 2011
G.f.: -x^2*(1+4*x^3+x^6) / ( (x-1)^3*(1+x^2)^3 ). - R. J. Mathar, Jan 03 2011
a(n+1) = A060819(n)*A060819(n+1).
a(n+1) = A000217(n)/(period 4:repeat 2,1,1,2=A014695(n+2)=A130658(n+3)).
a(n) = 3*a(n-4) -3*a(n-8) +a(n-12). - Paul Curtz, Mar 04 2011
a(n) = +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +1*a(n-9). - Joerg Arndt, Mar 04 2011
a(n+1) = A026741(A000217(n)). - Paul Curtz, Apr 04 2011
a(n) = numerator(Sum_{k=0..n-1} k/2). - Arkadiusz Wesolowski, Aug 09 2012
a(n) = n*(n-1)*(3-i^(n*(n-1)))/8, where i=sqrt(-1). - Bruno Berselli, Oct 01 2012, corrected by Vaclav Kotesovec, Aug 09 2022
Sum_{n>=2} 1/a(n) = 4 - Pi/2. - Amiram Eldar, Aug 09 2022
E.g.f.: x^2*(3*exp(x) + cos(x) + sin(x))/8. - Stefano Spezia, Aug 23 2025

A033952 Write 1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 1 at the origin and 2 at x=0, y=-1; sequence gives the numbers on the positive x-axis.

Original entry on oeis.org

1, 8, 6, 2, 3, 6, 6, 0, 3, 1, 8, 0, 2, 7, 1, 3, 9, 3, 4, 3, 9, 6, 0, 6, 8, 9, 6, 1, 2, 4, 2, 1, 5, 9, 4, 1, 0, 7, 7, 1, 7, 8, 0, 2, 6, 3, 4, 2, 7, 1, 8, 2, 0, 2, 2, 3, 5, 6, 6, 3, 2, 4, 1, 4, 1, 5, 6, 4, 2, 9, 2, 5, 5, 6, 8, 5, 0, 6, 4, 6, 7, 9, 0, 7, 6, 6, 7, 7, 7, 6, 4, 8, 0, 9, 1, 9, 5, 5, 9, 1, 0, 4, 0, 0, 9
Offset: 1

Views

Author

Olivier Gorin (gorin(AT)roazhon.inra.fr)

Keywords

Comments

Same as the South spoke of the Champernowne spiral (A244677).

Examples

			The spiral begins
.
  3---1---4---1---5
  |               |
  1   5---6---7   1
  |   |       |   |
  2   4   1   8   6
  |   |   |   |   |
  1   3---2   9   1
  |           |   |
  1---1---0---1   7
.
		

Crossrefs

Programs

  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]];
    f[n_] := 4n^2 - 5n + 2; Array[ almostNatural[ f@#, 10] &, 105] (* Robert G. Wilson v, Aug 08 2014 *)

Extensions

More terms from Andrew J. Gacek (andrew(AT)dgi.net)
Edited by Charles R Greathouse IV, Nov 01 2009

A033585 a(n) = 2*n*(4*n + 1).

Original entry on oeis.org

0, 10, 36, 78, 136, 210, 300, 406, 528, 666, 820, 990, 1176, 1378, 1596, 1830, 2080, 2346, 2628, 2926, 3240, 3570, 3916, 4278, 4656, 5050, 5460, 5886, 6328, 6786, 7260, 7750, 8256, 8778, 9316, 9870, 10440, 11026, 11628, 12246, 12880, 13530, 14196, 14878, 15576
Offset: 0

Views

Author

Keywords

Comments

If Y is a fixed 3-subset of a (4n+1)-set X then a(n) is the number of (4n-1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007
Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 03 2011

Crossrefs

Cf. A000217.

Programs

Formula

a(n) = 2*A007742(n).
a(n) = A000217(4*n) = A014105(2*n). - Reinhard Zumkeller, Sep 17 2008
a(n) = 16*n + a(n-1) - 6 with a(0) = 0. - Vincenzo Librandi, Aug 05 2010
a(n) = A005843(n)*A016813(n). - Omar E. Pol, Oct 31 2013
G.f.: -2*x*(5+3*x)/(x-1)^3 . - R. J. Mathar, Feb 06 2017
E.g.f.: (8*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 18 2017
From Amiram Eldar, Jul 22 2020: (Start)
Sum_{n>=1} 1/a(n) = 2 - Pi/4 - 3*log(2)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/4 + sqrt(2)*arcsinh(1)/2 + log(2)/2 - 2. (End)

A126890 Triangle read by rows: T(n,k) = n*(n+2*k+1)/2, 0 <= k <= n.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 6, 9, 12, 15, 10, 14, 18, 22, 26, 15, 20, 25, 30, 35, 40, 21, 27, 33, 39, 45, 51, 57, 28, 35, 42, 49, 56, 63, 70, 77, 36, 44, 52, 60, 68, 76, 84, 92, 100, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 66, 77, 88
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 30 2006

Keywords

Comments

T(n,k) + T(n,n-k) = A014105(n);
row sums give A059270; Sum_{k=0..n-1} T(n,k) = A000578(n);
central terms give A007742; T(2*n+1,n) = A016754(n);
T(n,0) = A000217(n);
T(n,1) = A000096(n) for n > 0;
T(n,2) = A055998(n) for n > 1;
T(n,3) = A055999(n) for n > 2;
T(n,4) = A056000(n) for n > 3;
T(n,5) = A056115(n) for n > 4;
T(n,6) = A056119(n) for n > 5;
T(n,7) = A056121(n) for n > 6;
T(n,8) = A056126(n) for n > 7;
T(n,10) = A101859(n-1) for n > 9;
T(n,n-3) = A095794(n-1) for n > 2;
T(n,n-2) = A045943(n-1) for n > 1;
T(n,n-1) = A000326(n) for n > 0;
T(n,n) = A005449(n).

Examples

			From _Philippe Deléham_, Oct 03 2011: (Start)
Triangle begins:
   0;
   1,  2;
   3,  5,  7;
   6,  9, 12, 15;
  10, 14, 18, 22, 26;
  15, 20, 25, 30, 35, 40;
  21, 27, 33, 39, 45, 51, 57;
  28, 35, 42, 49, 56, 63, 70, 77; (End)
		

References

  • Léonard Euler, Introduction à l'analyse infinitésimale, tome premier, ACL-Editions, Paris, 1987, p. 353-354.

Crossrefs

Cf. A110449.

Programs

  • Haskell
    a126890 n k = a126890_tabl !! n !! k
    a126890_row n = a126890_tabl !! n
    a126890_tabl = map fst $ iterate
       (\(xs@(x:_), i) -> (zipWith (+) ((x-i):xs) [2*i+1 ..], i+1)) ([0], 0)
    -- Reinhard Zumkeller, Nov 10 2013
  • Mathematica
    Flatten[Table[(n(n+2k+1))/2,{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 21 2013 *)

Formula

T(n,k) = T(n,k-1) + n, for k <= n. - Philippe Deléham, Oct 03 2011

A022267 a(n) = n*(9*n + 1)/2.

Original entry on oeis.org

0, 5, 19, 42, 74, 115, 165, 224, 292, 369, 455, 550, 654, 767, 889, 1020, 1160, 1309, 1467, 1634, 1810, 1995, 2189, 2392, 2604, 2825, 3055, 3294, 3542, 3799, 4065, 4340, 4624, 4917, 5219, 5530, 5850, 6179
Offset: 0

Views

Author

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 0, 1, 2, 3, 4, ... in a triangular spiral; then a(n) is the sequence found by reading the line from 0 in the direction 0, 5, ... . The spiral begins:
.
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ / \ \
19 5 0---1 11
/ / \
20 6---7---8---9--10
.
(End)
a(n) is the sum of n consecutive integers starting from 4*n+1: (5), (9+10), (13+14+15), ... - Klaus Purath, Jul 07 2020
a(n) with n>0 are the numbers with the periodic length 3 in the Bulgarian and Mancala solitaire. - Paul Weisenhorn, Jan 29 2022

Crossrefs

Cf. similar sequences listed in A254963.
Cf. similar sequences listed in A022289.

Programs

  • Maple
    seq(binomial(9*n+1,2)/9, n=0..37); # Zerinvary Lajos, Jan 21 2007
  • Mathematica
    Table[ n (9 n + 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 19}, 40] (* Harvey P. Dale, Jul 01 2013 *)
  • PARI
    vector(100,n,(n-1)*(9*n-8)/2) \\ Derek Orr, Feb 06 2015

Formula

a(n) = A110449(n, 4) for n>3.
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5 + 4*x)/(1 - x)^3.
a(n) = 4*A000217(n) + A000566(n). (End)
a(n) = 9*n + a(n-1) - 4 with n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(n) = A218470(9*n+4). - Philippe Deléham, Mar 27 2013
a(n) = A000217(5*n) - A000217(4*n). - Bruno Berselli, Oct 13 2016
E.g.f.: (1/2)*(9*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
a(n) = A060544(n+1) - A016813(n). - Leo Tavares, Mar 20 2022

A139273 a(n) = n*(8*n - 3).

Original entry on oeis.org

0, 5, 26, 63, 116, 185, 270, 371, 488, 621, 770, 935, 1116, 1313, 1526, 1755, 2000, 2261, 2538, 2831, 3140, 3465, 3806, 4163, 4536, 4925, 5330, 5751, 6188, 6641, 7110, 7595, 8096, 8613, 9146, 9695, 10260, 10841, 11438, 12051, 12680
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139277 in the same spiral.
Also, sequence of numbers of the form d*A000217(n-1) + 5*n with generating functions x*(5+(d-5)*x)/(1-x)^3; the inverse binomial transform is 0,5,d,0,0,.. (0 continued). See Crossrefs. - Bruno Berselli, Feb 11 2011
Even decagonal numbers divided by 2. - Omar E. Pol, Aug 19 2011

Crossrefs

Programs

  • Magma
    [ n*(8*n-3) : n in [0..40] ];  // Bruno Berselli, Feb 11 2011
    
  • Mathematica
    Table[n (8 n - 3), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 26}, 40] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    a(n)=n*(8*n-3) \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = 8*n^2 - 3*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 11 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5 + 11*x)/(1 - x)^3.
a(n) = 4*A000217(n) + A051866(n). (End)
a(n) = A028994(n)/2. - Omar E. Pol, Aug 19 2011
a(0)=0, a(1)=5, a(2)=26; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 02 2012
E.g.f.: (8*x^2 + 5*x)*exp(x). - G. C. Greubel, Jul 18 2017
Sum_{n>=1} 1/a(n) = 4*log(2)/3 - (sqrt(2)-1)*Pi/6 - sqrt(2)*arccoth(sqrt(2))/3. - Amiram Eldar, Jul 03 2020

A033988 Write 0,1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 0 at the origin and 1 at x=0, y=-1; sequence gives the numbers on the positive y-axis.

Original entry on oeis.org

0, 5, 1, 4, 3, 7, 8, 0, 4, 7, 7, 1, 2, 6, 2, 1, 8, 7, 4, 2, 6, 1, 8, 9, 2, 7, 6, 0, 6, 5, 1, 2, 0, 4, 1, 5, 8, 5, 1, 8, 8, 8, 2, 1, 2, 3, 2, 4, 9, 0, 2, 8, 9, 9, 3, 3, 2, 0, 3, 7, 9, 3, 4, 2, 8, 8, 4, 7, 1, 5, 5, 3, 7, 4, 5, 9, 7, 5, 6, 5, 9, 8, 7, 1, 5, 3, 7, 8, 4, 0, 8, 5, 6, 9, 9, 3, 1, 0, 9, 8, 1, 1, 6, 9, 9
Offset: 0

Views

Author

Keywords

Comments

In other words, write 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 ... in a clockwise spiral, starting with the 0 and taking the first step south; the sequence is then picked out from the resulting spiral by starting at the origin and moving north.

Examples

			  1---3---1---4---1
  |               |
  2   4---5---6   5
  |   |       |   |
  1   3   0   7   1
  |   |   |   |   |
  1   2---1   8   6
  |           |   |
  1---0---1---9   1
.
We begin with the 0 and wrap the numbers 1 2 3 4 ... around it.
Then the sequence is obtained by reading vertically upwards, starting from the initial 0.
		

Crossrefs

Sequences based on the same spiral: A033953, A033989, A033990. Spiral without zero: A033952.
Other sequences from spirals: A001107, A002939, A007742, A033951, A033954, A033991, A002943, A033996.
Cf. A033307.

Programs

Formula

a(n) = A033307(4*n^2 + n - 1) for n > 0. - Andrew Woods, May 18 2012

Extensions

More terms from Andrew Gacek (andrew(AT)dgi.net)
Edited by Jon E. Schoenfield, Aug 12 2018

A033989 Write 0,1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 0 at the origin and 1 at x=0, y=-1; sequence gives the numbers on the negative x-axis.

Original entry on oeis.org

0, 3, 1, 1, 3, 2, 7, 9, 1, 1, 6, 9, 4, 7, 9, 1, 2, 1, 2, 1, 6, 7, 4, 3, 6, 1, 2, 9, 5, 1, 1, 0, 9, 3, 1, 3, 6, 6, 1, 8, 6, 9, 2, 5, 0, 2, 2, 4, 6, 6, 2, 5, 6, 0, 3, 8, 9, 5, 3, 3, 6, 9, 4, 0, 5, 4, 4, 9, 8, 0, 5, 0, 4, 5, 5, 3, 3, 1, 6, 8, 5, 8, 6, 5, 1, 4, 7, 4, 9, 1, 8, 5, 1, 9, 9, 8, 6, 6, 9, 1, 1, 6, 4, 8, 1
Offset: 0

Views

Author

Keywords

Examples

			  2---3---2---4---2---5---2
  |                       |
  2   1---3---1---4---1   6
  |   |               |   |
  2   2   4---5---6   5   2
  |   |   |       |   |   |
  1   1   3   0   7   1   7
  |   |   |   |   |   |   |
  2   1   2---1   8   6   2
  |   |           |   |   |
  0   1---0---1---9   1   8
  |                   |   |
  2---9---1---8---1---7   2
We begin with the 0 and wrap the numbers 1 2 3 4 ... around it. Then the sequence is obtained by reading leftwards, starting from the initial 0. - _Andrew Woods_, May 20 2012
		

Crossrefs

Sequences based on the same spiral: A033953, A033988, A033990. Spiral without zero: A033952.
Other sequences from spirals: A001107, A002939, A007742, A033951, A033954, A033991, A002943, A033996, A033988.

Programs

Formula

a(n) = A033307(4*n^2-n-1) for n > 0. - Andrew Woods, May 20 2012

Extensions

More terms from Andrew J. Gacek (andrew(AT)dgi.net)
Edited by Charles R Greathouse IV, Nov 01 2009

A115258 Isolated primes in Ulam's lattice (1, 2, ... in spiral).

Original entry on oeis.org

83, 101, 127, 137, 163, 199, 233, 311, 373, 443, 463, 491, 541, 587, 613, 631, 641, 659, 673, 683, 691, 733, 757, 797, 859, 881, 911, 919, 953, 971, 991, 1013, 1051, 1061, 1103, 1109, 1117, 1193, 1201, 1213, 1249, 1307, 1319, 1409, 1433, 1459, 1483, 1487
Offset: 1

Views

Author

Keywords

Comments

Isolated prime numbers have no adjacent primes in a lattice generated by writing consecutive integers starting from 1 in a spiral distribution. If n0 is the number of isolated primes and p the number of primes less than N, the ratio n0/p approaches 1 as N increases. If n1, n2, n3, n4 denote the number of primes with respectively 1, 2, 3, 4 adjacent primes in the lattice, the ratios n1/n0, n2/n1, n3/n2, n4/n3 approach 0 as N increases. The limits stand for any 2D lattice of integers generated by a priori criteria (i.e., not knowing distributions of primes) as Ulam's lattice.

Examples

			83 is an isolated prime as the adjacent numbers in lattice 50, 51, 81, 82, 84, 123, 124, 125 are not primes.
From _Michael De Vlieger_, Dec 22 2015: (Start)
Spiral including n <= 17^2 showing only primes, with the isolated primes in parentheses (redrawn by _Jon E. Schoenfield_, Aug 06 2017):
  257 .  .  .  .  . 251 .  .  .  .  .  .  .  .  . 241
   . 197 .  .  . 193 . 191 .  .  .  .  .  .  .  .  .
   .  .  .  .  .  .  .  . 139 .(137).  .  .  .  . 239
   .(199).(101).  .  . 97  .  .  .  .  .  .  . 181 .
   .  .  .  .  .  .  .  . 61  . 59  .  .  . 131 .  .
   .  .  . 103 . 37  .  .  .  .  . 31  . 89  . 179 .
  263 . 149 . 67  . 17  .  .  . 13  .  .  .  .  .  .
   .  .  .  .  .  .  .  5  .  3  . 29  .  .  .  .  .
   .  . 151 .  .  . 19  .  .  2 11  . 53  .(127).(233)
   .  .  . 107 . 41  .  7  .  .  .  .  .  .  .  .  .
   .  .  .  . 71  .  .  . 23  .  .  .  .  .  .  .  .
   .  .  . 109 . 43  .  .  . 47  .  .  .(83) . 173 .
  269 .  .  . 73  .  .  .  .  . 79  .  .  .  .  . 229
   .  .  .  .  . 113 .  .  .  .  .  .  .  .  .  .  .
  271 . 157 .  .  .  .  .(163).  .  . 167 .  .  . 227
   . 211 .  .  .  .  .  .  .  .  .  .  . 223 .  .  .
   .  .  .  . 277 .  .  . 281 . 283 .  .  .  .  .  .
(End)
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 22.

Crossrefs

Cf. A113688 (isolated semiprimes in the semiprime spiral), A156859.

Programs

  • Maple
    # A is Ulam's lattice
    if (isprime(A[x,y])and(not(isprime(A[x+1,y]) or isprime(A[x-1,y])or isprime(A[x,y+1])or isprime(A[x,y-1])or isprime(A[x-1,y-1])or isprime(A[x+1,y+1])or isprime(A[x+1,y-1])or isprime(A[x-1,y+1])))) then print (A[x,y]) ; fi;
  • Mathematica
    spiral[n_] := Block[{o = 2 n - 1, t, w}, t = Table[0, {o}, {o}]; t = ReplacePart[t, {n, n} -> 1]; Do[w = Partition[Range[(2 (# - 1) - 1)^2 + 1, (2 # - 1)^2], 2 (# - 1)] &@ k; Do[t = ReplacePart[t, {(n + k) - (j + 1), n + (k - 1)} -> #[[1, j]]]; t = ReplacePart[t, {n - (k - 1), (n + k) - (j + 1)} -> #[[2, j]]]; t = ReplacePart[t, {(n - k) + (j + 1), n - (k - 1)} -> #[[3, j]]]; t = ReplacePart[t, {n + (k - 1), (n - k) + (j + 1)} -> #[[4, j]]], {j, 2 (k - 1)}] &@ w, {k, 2, n}]; t]; f[w_] := Block[{d = Dimensions@ w, t, g}, t = Reap[Do[Sow@ Take[#[[k]], {2, First@ d - 1}], {k, 2, Last@ d - 1}]][[-1, 1]] &@ w; g[n_] := If[n != 0, Total@ Join[Take[w[[Last@ # - 1]], {First@ # - 1, First@ # + 1}], {First@ #, Last@ #} &@ Take[w[[Last@ #]], {First@ # - 1, First@ # + 1}], Take[w[[Last@ # + 1]], {First@ # - 1, First@# + 1}]] &@(Reverse@ First@ Position[t, n] + {1, 1}) == 0, False]; Select[Union@ Flatten@ t, g@ # &]]; f[spiral@ 21 /. n_ /; CompositeQ@ n -> 0] (* Michael De Vlieger, Dec 22 2015, Version 10 *)
Previous Showing 31-40 of 71 results. Next