cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 185 results. Next

A359897 Number of strict integer partitions of n whose parts have the same mean as median.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 4, 4, 7, 6, 6, 10, 7, 10, 13, 11, 9, 20, 10, 20, 18, 21, 12, 30, 24, 28, 27, 30, 15, 73, 16, 37, 43, 45, 67, 74, 19, 55, 71, 126, 21, 150, 22, 75, 225, 78, 24, 183, 126, 245, 192, 132, 27, 284, 244, 403, 303, 120, 30, 828
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)    (8)    (9)
            (2,1)  (3,1)  (3,2)  (4,2)    (4,3)  (5,3)  (5,4)
                          (4,1)  (5,1)    (5,2)  (6,2)  (6,3)
                                 (3,2,1)  (6,1)  (7,1)  (7,2)
                                                        (8,1)
                                                        (4,3,2)
                                                        (5,3,1)
		

Crossrefs

The non-strict version is A240219, complement A359894, ranked by A359889.
The complement is counted by A359898.
The odd-length case is A359899, complement A359900.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
A008289 counts strict partitions by mean.
A237984 counts partitions containing their mean, complement A327472.
A240850 counts strict partitions containing their mean, complement A240851.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Mean[#]==Median[#]&]],{n,0,30}]

A364915 Number of integer partitions of n such that no distinct part can be written as a nonnegative linear combination of other distinct parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 12, 10, 16, 16, 19, 21, 29, 25, 37, 35, 44, 46, 60, 55, 75, 71, 90, 90, 114, 110, 140, 138, 167, 163, 217, 201, 248, 241, 298, 303, 359, 355, 425, 422, 520, 496, 594, 603, 715, 706, 834, 826, 968, 972, 1153, 1147, 1334, 1315, 1530
Offset: 0

Views

Author

Gus Wiseman, Aug 22 2023

Keywords

Examples

			The a(1) = 1 through a(10) = 8 partitions (A=10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    32     33      43       44        54         55
              1111  11111  222     52       53        72         64
                           111111  322      332       333        73
                                   1111111  2222      522        433
                                            11111111  3222       3322
                                                      111111111  22222
                                                                 1111111111
The partition (5,4,3) has no part that can be written as a nonnegative linear combination of the others, so is counted under a(12).
The partition (6,4,3,2) has 6=4+2, or 6=3+3, or 6=2+2+2, or 4=2+2, so is not counted under a(15).
		

Crossrefs

For sums instead of combinations we have A237667, binary A236912.
For subsets instead of partitions we have A326083, complement A364914.
The strict case is A364350.
The complement is A365068, strict A364839.
The positive case is A365072, strict A365006.
A000041 counts integer partitions, strict A000009.
A007865 counts binary sum-free sets w/ re-usable parts, complement A093971.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], Function[ptn,!Or@@Table[combs[ptn[[k]],Delete[ptn,k]]!={}, {k,Length[ptn]}]]@*Union]], {n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    def A364915(n):
        if n <= 1: return 1
        alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 1
        for p in partitions(n,k=n-1):
            s = set(p)
            if not any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
                c += 1
        return c # Chai Wah Wu, Sep 23 2023

Formula

a(n) = A000041(n) - A365068(n).

Extensions

a(37)-a(59) from Chai Wah Wu, Sep 25 2023

A336127 Number of ways to split a composition of n into contiguous subsequences with different sums.

Original entry on oeis.org

1, 1, 2, 8, 16, 48, 144, 352, 896, 2432, 7168, 16896, 46080, 114688, 303104, 843776, 2080768, 5308416, 13762560, 34865152, 87818240, 241172480, 583008256, 1503657984, 3762290688, 9604956160, 23689428992, 60532195328, 156397207552, 385137770496, 967978254336
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(0) = 1 through a(4) = 16 splits:
  ()  (1)  (2)    (3)        (4)
           (1,1)  (1,2)      (1,3)
                  (2,1)      (2,2)
                  (1,1,1)    (3,1)
                  (1),(2)    (1,1,2)
                  (2),(1)    (1,2,1)
                  (1),(1,1)  (1),(3)
                  (1,1),(1)  (2,1,1)
                             (3),(1)
                             (1,1,1,1)
                             (1),(1,2)
                             (1),(2,1)
                             (1,2),(1)
                             (2,1),(1)
                             (1),(1,1,1)
                             (1,1,1),(1)
		

Crossrefs

The version with equal instead of different sums is A074854.
Starting with a strict composition gives A336128.
Starting with a partition gives A336131.
Starting with a strict partition gives A336132
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Join@@Permutations/@IntegerPartitions[n]}],{n,0,10}]

Formula

a(n) = Sum_{k=0..n} 2^(n-k) k! A008289(n,k).

A363260 Number of integer partitions of n with parts disjoint from first differences of parts, meaning no part is the difference of two consecutive parts.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 13, 17, 21, 28, 35, 46, 57, 70, 87, 110, 130, 165, 198, 238, 285, 349, 410, 498, 583, 702, 819, 983, 1136, 1353, 1570, 1852, 2137, 2520, 2898, 3390, 3891, 4540, 5191, 6028, 6889, 7951, 9082, 10450, 11884, 13650, 15508, 17728, 20113
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (31)    (41)     (51)      (52)       (53)
                    (1111)  (311)    (222)     (61)       (62)
                            (11111)  (411)     (322)      (71)
                                     (3111)    (331)      (332)
                                     (111111)  (511)      (611)
                                               (4111)     (2222)
                                               (31111)    (3311)
                                               (1111111)  (5111)
                                                          (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

For length instead of differences we have A229816, strict A240861.
For all differences of pairs parts we have A364345.
For subsets of {1..n} instead of partitions we have A364463.
The strict case is A364464.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first-differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]=={}&]],{n,0,30}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A363260(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A363740 Number of integer partitions of n whose median appears more times than any other part, i.e., partitions containing a unique mode equal to the median.

Original entry on oeis.org

1, 2, 2, 4, 5, 7, 10, 15, 18, 26, 35, 46, 61, 82, 102, 136, 174, 224, 283, 360, 449, 569, 708, 883, 1089, 1352, 1659, 2042, 2492, 3039, 3695, 4492, 5426, 6555, 7889, 9482, 11360, 13602, 16231, 19348, 23005, 27313, 32364, 38303, 45227, 53341, 62800, 73829
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(1) = 1 through a(8) = 15 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (2111)   (411)     (511)      (422)
                            (11111)  (3111)    (2221)     (611)
                                     (21111)   (4111)     (2222)
                                     (111111)  (22111)    (3221)
                                               (31111)    (5111)
                                               (211111)   (22211)
                                               (1111111)  (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For mean instead of mode we have A240219, see A359894, A359889, A359895, A359897, A359899.
Including mean also gives A363719, ranks A363727.
For mean instead of median we have A363723, see A363724, A363731.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median.
A362608 counts partitions with a unique mode, ranks A356862.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],{Median[#]}==modes[#]&]],{n,30}]

A364911 Triangle read by rows where T(n,k) is the number of integer partitions with sum <= n and with distinct parts summing to k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 4, 2, 3, 2, 1, 5, 2, 5, 3, 3, 1, 6, 3, 8, 4, 4, 4, 1, 7, 3, 11, 6, 6, 6, 5, 1, 8, 4, 14, 9, 8, 10, 7, 6, 1, 9, 4, 19, 11, 11, 14, 11, 9, 8, 1, 10, 5, 23, 14, 15, 21, 15, 14, 11, 10, 1, 11, 5, 28, 17, 19, 28, 22, 20, 17, 15, 12
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2023

Keywords

Comments

Also the number of ways to write any number up to n as a positive linear combination of a strict integer partition of k.

Examples

			Triangle begins:
  1
  1  1
  1  2  1
  1  3  1  2
  1  4  2  3  2
  1  5  2  5  3  3
  1  6  3  8  4  4  4
  1  7  3 11  6  6  6  5
  1  8  4 14  9  8 10  7  6
  1  9  4 19 11 11 14 11  9  8
  1 10  5 23 14 15 21 15 14 11 10
  1 11  5 28 17 19 28 22 20 17 15 12
  1 12  6 34 21 22 40 28 28 24 24 17 15
  1 13  6 40 25 27 50 38 37 34 35 27 22 18
  1 14  7 46 29 32 65 49 50 43 51 38 35 26 22
  1 15  7 54 33 38 79 62 63 59 68 55 50 41 32 27
Row n = 5 counts the following partitions:
    .    1           2     3         4       5
         1+1         2+2   1+2       1+3     1+4
         1+1+1             1+1+2     1+1+3   2+3
         1+1+1+1           1+1+1+2
         1+1+1+1+1         1+2+2
Row n = 5 counts the following positive linear combinations:
  .  1*1  1*2  1*3      1*4      1*5
     2*1  2*2  1*2+1*1  1*3+1*1  1*3+1*2
     3*1       1*2+2*1  1*3+2*1  1*4+1*1
     4*1       1*2+3*1
     5*1       2*2+1*1
		

Crossrefs

Column n = k is A000009.
Column k = 0 is A000012.
Column k = 1 is A000027.
Row sums are A000070.
Column k = 2 is A008619.
Columns are partial sums of columns of A116861.
Column k = 3 appears to be the partial sums of A137719.
Diagonal n = 2k is A364910.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A114638 counts partitions where (length) = (sum of distinct parts).
A116608 counts partitions by number of distinct parts.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    Table[Length[Select[Array[IntegerPartitions,n+1,0,Join],Total[Union[#]]==k&]],{n,0,9},{k,0,n}]
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(prod(k=1, n, 1 - y^k + y^k/(1 - x^k), 1/(1 - x) + O(x*x^n)))]}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024

Formula

G.f.: A(x,y) = (1/(1 - x)) * Product_{k>=1} (1 - y^k + y^k/(1 - x^k)). - Andrew Howroyd, Jan 11 2024

A060016 Triangle T(n,k) = number of partitions of n into k distinct parts, 1 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 1, 4, 3, 0, 0, 0, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 0, 0, 0, 1, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 1, 5, 7, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 10, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Also number of partitions of n-k(k+1)/2 into at most k parts (not necessarily distinct).
A025147(n) = Sum_{k=2..floor((n+2)/2)} a(n-k+1, k-1). - Reinhard Zumkeller, Nov 04 2007

Examples

			Triangle starts
[ 1]  1,
[ 2]  1, 0,
[ 3]  1, 1, 0,
[ 4]  1, 1, 0, 0,
[ 5]  1, 2, 0, 0, 0,
[ 6]  1, 2, 1, 0, 0, 0,
[ 7]  1, 3, 1, 0, 0, 0, 0,
[ 8]  1, 3, 2, 0, 0, 0, 0, 0,
[ 9]  1, 4, 3, 0, 0, 0, 0, 0, 0,
[10]  1, 4, 4, 1, 0, 0, 0, 0, 0, 0,
[11]  1, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0,
[12]  1, 5, 7, 2, 0, 0, 0, 0, 0, 0, 0, 0,
[13]  1, 6, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,
[14]  1, 6, 10, 5, 0, 0, 0, 0, 0, 0, 0, 0, ...
T(8,3)=2 since 8 can be written in 2 ways as the sum of 3 distinct positive integers: 5+2+1 and 4+3+1.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 831.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 94, 96 and 307.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 219.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIV.2, p. 493.

Crossrefs

Columns (offset) include A057427, A004526, A001399, A001400, A001401, etc. Cf. A000009 (row sums), A008289 (without zeros), A030699 (row maximum), A008284 (partition triangle including duplications).
See A008289 for another version.

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
          -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))
        end:
    T:= proc(n) local l; l:= subsop(1=NULL, b(n, n));
          l[], 0$(n-nops(l))
        end:
    seq(T(n), n=1..20);  # Alois P. Heinz, Dec 12 2012
  • Mathematica
    Flatten[Table[Length[Select[IntegerPartitions[n,{k}],Max[Transpose[ Tally[#]][[2]]]==1&]],{n,20},{k,n}]] (* Harvey P. Dale, Feb 27 2012 *)
    T[, 1] = 1; T[n, k_] /; 1, ] = 0; Table[T[n, k], {n, 1, 20}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 26 2015 *)
  • PARI
    N=16;  q='q+O('q^N);
    gf=sum(n=0,N, z^n * q^((n^2+n)/2) / prod(k=1,n, 1-q^k ) );
    /* print triangle: */
    gf -= 1; /* remove row zero */
    P=Pol(gf,'q);
    { for (n=1,N-1,
        p = Pol(polcoeff(P, n),'z);
        p += 'z^(n+1);  /* preserve trailing zeros */
        v = Vec(polrecip(p));
        v = vector(n,k,v[k]); /* trim to size n */
        print(v);
    ); }
    /* Joerg Arndt, Oct 20 2012 */

Formula

T(n, k) = T(n-k, k) + T(n-k, k-1) [with T(n, 0)=1 if n=0 and 0 otherwise].
G.f.: Sum_{n>=0} z^n * q^((n^2+n)/2) / Product_{k=1..n} (1-q^k), rows by powers of q, columns by powers of z; includes row 0 (drop term for n=0 for this triangle, see PARI code); setting z=1 gives g.f. for A000009; cf. to g.f. for A072574. - Joerg Arndt, Oct 20 2012

Extensions

More terms, recurrence, etc. from Henry Bottomley, Mar 26 2001

A363719 Number of integer partitions of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 5, 2, 10, 2, 7, 7, 12, 2, 18, 2, 24, 16, 13, 2, 58, 15, 18, 37, 60, 2, 123, 2, 98, 79, 35, 103, 332, 2, 49, 166, 451, 2, 515, 2, 473, 738, 92, 2, 1561, 277, 839, 631, 1234, 2, 2043, 1560, 2867, 1156, 225, 2, 9020
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.
Without loss of generality, we may assume there is a unique middle-part (A238478).
Includes all constant partitions.

Examples

			The a(n) partitions for n = 1, 2, 4, 6, 8, 12, 14, 16 (A..G = 10..16):
  1  2   4     6       8         C             E               G
     11  22    33      44        66            77              88
         1111  222     2222      444           2222222         4444
               111111  3221      3333          3222221         5443
                       11111111  4332          3322211         6442
                                 5331          4222211         7441
                                 222222        11111111111111  22222222
                                 322221                        32222221
                                 422211                        33222211
                                 111111111111                  42222211
                                                               52222111
                                                               1^16
		

Crossrefs

For unequal instead of equal: A363720, ranks A363730, unique mode A363725.
The odd-length case is A363721.
These partitions have ranks A363727, nonprime A363722.
The case of non-constant partitions is A363728, ranks A363729.
The version for factorizations is A363741, see A359909, A359910.
Just two statistics:
- (mean) = (median) gives A240219, also A359889, A359895, A359897, A359899.
- (mean) != (median) gives A359894, also A359890, A359896, A359898, A359900.
- (mean) = (mode) gives A363723, see A363724, A363731.
- (median) = (mode) gives A363740.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or negative mean), strict A008289.
A359893 and A359901 count partitions by median, odd-length A359902.
A362608 counts partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], {Mean[#]}=={Median[#]}==modes[#]&]],{n,30}]

A364910 Number of integer partitions of 2n whose distinct parts sum to n.

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 12, 11, 19, 23, 54, 55, 103, 115, 178, 289, 389, 507, 757, 970, 1343, 2033, 2579, 3481, 4840, 6312, 8317, 10998, 15459, 19334, 26368, 33480, 44709, 56838, 74878, 93369, 128109, 157024, 206471, 258357, 338085, 417530, 544263, 669388, 859570, 1082758, 1367068
Offset: 0

Views

Author

Gus Wiseman, Aug 16 2023

Keywords

Comments

Also the number of ways to write n as a nonnegative linear combination of the parts of a strict integer partition of n.

Examples

			The a(0) = 1 through a(7) = 11 partitions:
  ()  (11)  (22)  (33)     (44)      (55)       (66)         (77)
                  (2211)   (3311)    (3322)     (4422)       (4433)
                  (21111)  (311111)  (4411)     (5511)       (5522)
                                     (4111111)  (33321)      (6611)
                                                (42222)      (442211)
                                                (322221)     (4222211)
                                                (332211)     (4421111)
                                                (3222111)    (42221111)
                                                (3321111)    (422111111)
                                                (32211111)   (611111111)
                                                (51111111)   (4211111111)
                                                (321111111)
The a(0) = 1 through a(7) = 11 linear combinations:
  0  1*1  1*2  1*3      1*4      1*5      1*6          1*7
               0*2+3*1  0*3+4*1  0*4+5*1  0*4+3*2      0*6+7*1
               1*2+1*1  1*3+1*1  1*3+1*2  0*5+6*1      1*4+1*3
                                 1*4+1*1  1*4+1*2      1*5+1*2
                                          1*5+1*1      1*6+1*1
                                          0*3+0*2+6*1  0*4+0*2+7*1
                                          0*3+1*2+4*1  0*4+1*2+5*1
                                          0*3+2*2+2*1  0*4+2*2+3*1
                                          0*3+3*2+0*1  0*4+3*2+1*1
                                          1*3+0*2+3*1  1*4+0*2+3*1
                                          1*3+1*2+1*1  1*4+1*2+1*1
                                          2*3+0*2+0*1
		

Crossrefs

The case with no zero coefficients is A000009.
Central diagonal of A116861.
A version based on Heinz numbers is A364906.
Using all partitions (not just strict) we get A364907.
The version for compositions is A364908, strict A364909.
Main diagonal of A364916.
Using strict partitions of any number from 1 to n gives A365002.
These partitions have ranks A365003.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[2n],Total[Union[#]]==n&]],{n,0,15}]
  • PARI
    a(n) = {my(res = 0); forpart(p = 2*n,s = Set(p); if(vecsum(s) == n, res++)); res} \\ David A. Corneth, Aug 20 2023
    
  • Python
    from sympy.utilities.iterables import partitions
    def A364910(n): return sum(1 for d in partitions(n<<1,k=n) if sum(set(d))==n) # Chai Wah Wu, Sep 13 2023

Formula

a(n) = A116861(2n,n).
a(n) = A364916(n,n).

Extensions

More terms from David A. Corneth, Aug 20 2023

A365312 Number of strict integer partitions with sum <= n that cannot be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 2, 6, 4, 8, 7, 16, 6, 24, 17, 24, 20, 46, 22, 62, 31, 63, 57, 106, 35, 122, 90, 137, 88, 212, 74, 262, 134, 267, 206, 345, 121, 476, 294, 484, 232, 698, 242, 837, 389, 763, 571, 1185, 318, 1327, 634, 1392, 727, 1927, 640, 2056, 827, 2233, 1328
Offset: 0

Views

Author

Gus Wiseman, Sep 05 2023

Keywords

Examples

			The strict partition (7,3,2) has 19 = 1*7 + 2*3 + 3*2 so is not counted under a(19).
The strict partition (9,6,3) cannot be linearly combined to obtain 19, so is counted under a(19).
The a(0) = 0 through a(11) = 16 strict partitions:
  .  .  .  (2)  (3)  (2)  (4)  (2)    (3)  (2)    (3)    (2)
                     (3)  (5)  (3)    (5)  (4)    (4)    (3)
                     (4)       (4)    (6)  (5)    (6)    (4)
                               (5)    (7)  (6)    (7)    (5)
                               (6)         (7)    (8)    (6)
                               (4,2)       (8)    (9)    (7)
                                           (4,2)  (6,3)  (8)
                                           (6,2)         (9)
                                                         (10)
                                                         (4,2)
                                                         (5,4)
                                                         (6,2)
                                                         (6,3)
                                                         (6,4)
                                                         (7,3)
                                                         (8,2)
		

Crossrefs

The complement for positive coefficients is counted by A088314.
For positive coefficients we have A088528.
The complement is counted by A365311.
For non-strict partitions we have A365378, complement A365379.
The version for subsets is A365380, complement A365073.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Select[Join@@Array[IntegerPartitions,n], UnsameQ@@#&],combs[n,#]=={}&]],{n,0,10}]
  • Python
    from math import isqrt
    from sympy.utilities.iterables import partitions
    def A365312(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n+1) for b in partitions(m,m=isqrt(1+(n<<3))>>1) if max(b.values()) == 1 and not any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023

Extensions

a(26)-a(58) from Chai Wah Wu, Sep 13 2023
Previous Showing 51-60 of 185 results. Next