1, 1, 0, 1, 2, 0, 1, 2, 0, 0, 1, 4, 0, 0, 0, 1, 4, 6, 0, 0, 0, 1, 6, 6, 0, 0, 0, 0, 1, 6, 12, 0, 0, 0, 0, 0, 1, 8, 18, 0, 0, 0, 0, 0, 0, 1, 8, 24, 24, 0, 0, 0, 0, 0, 0, 1, 10, 30, 24, 0, 0, 0, 0, 0, 0, 0, 1, 10, 42, 48, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 48, 72, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 60, 120, 0
Offset: 1
T(6,2)=4 since 6 can be written as 1+5=2+4=4+2=5+1.
Triangle starts (trailing zeros omitted for n>=10):
[ 1] 1;
[ 2] 1, 0;
[ 3] 1, 2, 0;
[ 4] 1, 2, 0, 0;
[ 5] 1, 4, 0, 0, 0;
[ 6] 1, 4, 6, 0, 0, 0;
[ 7] 1, 6, 6, 0, 0, 0, 0;
[ 8] 1, 6, 12, 0, 0, 0, 0, 0;
[ 9] 1, 8, 18, 0, 0, 0, 0, 0, 0;
[10] 1, 8, 24, 24, 0, 0, ...;
[11] 1, 10, 30, 24, 0, 0, ...;
[12] 1, 10, 42, 48, 0, 0, ...;
[13] 1, 12, 48, 72, 0, 0, ...;
[14] 1, 12, 60, 120, 0, 0, ...;
[15] 1, 14, 72, 144, 120, 0, 0, ...;
[16] 1, 14, 84, 216, 120, 0, 0, ...;
[17] 1, 16, 96, 264, 240, 0, 0, ...;
[18] 1, 16, 114, 360, 360, 0, 0, ...;
[19] 1, 18, 126, 432, 600, 0, 0, ...;
[20] 1, 18, 144, 552, 840, 0, 0, ...;
These rows (without the zeros) are shown in the Richmond/Knopfmacher reference.
From _Gus Wiseman_, Oct 17 2022: (Start)
Column n = 8 counts the following compositions.
(8) (1,7) (1,2,5)
(2,6) (1,3,4)
(3,5) (1,4,3)
(5,3) (1,5,2)
(6,2) (2,1,5)
(7,1) (2,5,1)
(3,1,4)
(3,4,1)
(4,1,3)
(4,3,1)
(5,1,2)
(5,2,1)
(End)
Comments