cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 83 results. Next

A034781 Triangle of number of rooted trees with n >= 2 nodes and height h >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 10, 18, 13, 5, 1, 1, 14, 38, 36, 19, 6, 1, 1, 21, 76, 93, 61, 26, 7, 1, 1, 29, 147, 225, 180, 94, 34, 8, 1, 1, 41, 277, 528, 498, 308, 136, 43, 9, 1, 1, 55, 509, 1198, 1323, 941, 487, 188, 53, 10, 1
Offset: 2

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  1  1;
  1  2  1;
  1  4  3  1;
  1  6  8  4  1;
  1 10 18 13  5  1;
  1 14 38 36 19  6 1;
thus there are 10 trees with 7 nodes and height 2.
		

Crossrefs

T(2n,n) = A245102(n), T(2n+1,n) = A245103(n).
Row sums give A000081.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0,
         add(binomial(b((i-1)$2, k-1)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    T:= (n, k)-> b((n-1)$2, k) -b((n-1)$2, k-1):
    seq(seq(T(n, k), k=1..n-1), n=2..16);  # Alois P. Heinz, Jul 31 2013
  • Mathematica
    Drop[Map[Select[#, # > 0 &] &,
       Transpose[
        Prepend[Table[
          f[n_] :=
           Nest[CoefficientList[
              Series[Product[1/(1 - x^i)^#[[i]], {i, 1, Length[#]}], {x,
                0, 10}], x] &, {1}, n]; f[m] - f[m - 1], {m, 2, 10}],
    Prepend[Table[1, {10}], 0]]]], 1] // Grid (* Geoffrey Critzer, Aug 01 2013 *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1 || k<1, 0, Sum[Binomial[b[i-1, i-1, k-1]+j-1, j]*b[n-i*j, i-1, k], {j, 0, n/i}]]]; T[n_, k_] := b[n-1, n-1, k]-b[n-1, n-1, k-1]; Table[T[n, k], {n, 2, 16}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 11 2014, after Alois P. Heinz *)
  • Python
    def A034781(n, k): return A375467(n, k) - A375467(n, k - 1)
    for n in range(2, 10): print([A034781(n, k) for k in range(2, n + 1)])
    # Peter Luschny, Aug 30 2024

Formula

Reference gives recurrence.
T(n, k) = A375467(n, k) - A375467(n, k - 1). - Peter Luschny, Aug 30 2024

Extensions

More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Sep 19 2003

A005176 Number of regular graphs with n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 8, 6, 22, 26, 176, 546, 19002, 389454, 50314870, 2942198546, 1698517037030, 442786966117636, 649978211591622812, 429712868499646587714, 2886054228478618215888598, 8835589045148342277802657274, 152929279364927228928025482936226, 1207932509391069805495173417972533120, 99162609848561525198669168653641835566774
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Not necessarily connected simple regular graphs: A005176 (any degree), A051031 (triangular array), specified degree k: A000012 (k=0), A059841 (k=1), A008483 (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
Simple regular graphs of any degree: A005177 (connected), A068932 (disconnected), this sequence (not necessarily connected).
Not necessarily connected regular simple graphs with girth at least g: this sequence (g=3), A185314 (g=4), A185315 (g=5), A185316 (g=6), A185317 (g=7), A185318 (g=8), A185319 (g=9).
Cf. A295193.

Formula

a(n) = A005177(n) + A068932(n). - David Wasserman, Mar 08 2002
Row sums of triangle A051031.

Extensions

More terms from David Wasserman, Mar 08 2002
a(15) and a(16) from Jason Kimberley, Sep 25 2009
Edited by Jason Kimberley, Jan 06 2011 and May 24 2012
a(17)-a(21) from Andrew Howroyd, Mar 08 2020
a(22)-a(24) from Andrew Howroyd, Apr 05 2020

A006649 Number of graphs with n nodes, n edges and no isolated vertices.

Original entry on oeis.org

1, 0, 0, 1, 2, 5, 15, 41, 124, 369, 1132, 3491, 10984, 34768, 111514, 360560, 1176797, 3870389, 12829765, 42829894, 143980892, 487227611, 1659499566, 5688046485, 19617965938, 68078878268, 237694501644, 834946053269, 2950683815028, 10490767818951, 37524169403930
Offset: 0

Views

Author

Keywords

References

  • W. L. Kocay, Some new methods in reconstruction theory, pp. 89 - 114 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    a(n) = polcoef(G(n, O(x*x^n)) - if(n, G(n-1, O(x*x^n))), n) \\ G defined in A008406. - Andrew Howroyd, Jan 09 2024

Formula

a(n) = A008406(n,n) - A008406(n-1, n) for n > 0. - Andrew Howroyd, Jan 09 2024

Extensions

More terms from Vladeta Jovovic, Mar 02 2008
a(0)-a(2) prepended and a(27) and beyond from Andrew Howroyd, Jan 09 2024

A005142 Number of connected bipartite graphs with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 17, 44, 182, 730, 4032, 25598, 212780, 2241730, 31193324, 575252112, 14218209962, 472740425319, 21208887576786, 1286099113807999, 105567921675718772, 11743905783670560579, 1772771666309380358809, 363526952035325887859823, 101386021137641794979558045
Offset: 0

Views

Author

Keywords

Comments

Also, the number of unlabeled connected bicolored graphs having n nodes; the color classes may be interchanged. - Robert W. Robinson
Also, for n>1, number of connected triangle-free graphs on n nodes with chromatic number 2. - Keith Briggs, Mar 21 2006 (cf. A116079).
Also, first diagonal of triangle in A126736.
EULER transform of [1, 1, 1, 3, 5, 17, ...] is A033995 [1, 2, 3, 7, 13, ...]. - Michael Somos, May 13 2019

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* See the links section. *)

Formula

a(2*n+1) = A318870(2*n+1)/2, a(2*n) = (a(n) + A318869(n) + A318870(2*n) - A318870(n))/2. - Andrew Howroyd, Sep 04 2018

Extensions

More terms from Ronald C. Read
a(0)=1 prepended by Max Alekseyev, Jun 24 2013
Terms a(21) and beyond from Andrew Howroyd, Sep 04 2018

A001930 Number of topologies, or transitive digraphs with n unlabeled nodes.

Original entry on oeis.org

1, 1, 3, 9, 33, 139, 718, 4535, 35979, 363083, 4717687, 79501654, 1744252509, 49872339897, 1856792610995, 89847422244493, 5637294117525695
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Aug 02 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 9 topologies:
  {}  {}{1}  {}{12}        {}{123}
             {}{2}{12}     {}{3}{123}
             {}{1}{2}{12}  {}{23}{123}
                           {}{1}{23}{123}
                           {}{3}{23}{123}
                           {}{2}{3}{23}{123}
                           {}{3}{13}{23}{123}
                           {}{2}{3}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}{123}
(End)
		

References

  • Loic Foissy, Claudia Malvenuto, Frederic Patras, Infinitesimal and B_infinity-algebras, finite spaces, and quasi-symmetric functions, Journal of Pure and Applied Algebra, Elsevier, 2016, 220 (6), pp. 2434-2458. .
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218 (but the last entry is wrong).
  • M. Kolli, On the cardinality of the T_0-topologies on a finite set, Preprint, 2014.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
  • J. A. Wright, personal communication.
  • For further references concerning the enumeration of topologies and posets see under A000112 and A001035.

Crossrefs

Cf. A000798 (labeled topologies), A001035 (labeled posets), A001930 (unlabeled topologies), A000112 (unlabeled posets), A006057, A001928, A001929.
The case with unions only is A108798.
The case with intersections only is (also) A108798.
Partial sums are A326898 (the non-covering case).

Extensions

a(8)-a(12) from Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
a(13)-a(16) from Brinkmann's and McKay's paper, sent by Vladeta Jovovic, Jan 04 2006

A005638 Number of unlabeled trivalent (or cubic) graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 2, 6, 21, 94, 540, 4207, 42110, 516344, 7373924, 118573592, 2103205738, 40634185402, 847871397424, 18987149095005, 454032821688754, 11544329612485981, 310964453836198311, 8845303172513781271
Offset: 0

Views

Author

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (2n-4)-regular graphs on 2n vertices.

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000421.
Row sums of A275744.
3-regular simple graphs: A002851 (connected), A165653 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), this sequence (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
Not necessarily connected 3-regular simple graphs with girth *at least* g: this sequence (g=3), A185334 (g=4), A185335 (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A002851(n) + A165653(n).
This sequence is the Euler transformation of A002851.

Extensions

More terms from Ronald C. Read.
Comment, formulas, and (most) crossrefs by Jason Kimberley, 2009 and 2012

A005177 Number of connected regular graphs with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 4, 17, 22, 167, 539, 18979, 389436, 50314796, 2942198440, 1698517036411, 442786966115560, 649978211591600286, 429712868499646474880, 2886054228478618211088773, 8835589045148342277771518309, 152929279364927228928021274993215, 1207932509391069805495173301992815105, 99162609848561525198669168640159162918815
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Regular simple graphs of any degree: this sequence (connected), A068932 (disconnected), A005176 (not necessarily connected), A275420 (multisets).
Connected regular graphs of any degree with girth at least g: this sequence (g=3), A186724 (g=4), A186725 (g=5), A186726 (g=6), A186727 (g=7), A186728 (g=8), A186729 (g=9).
Connected regular simple graphs: this sequence (any degree), A068934 (triangular array); specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11). - Jason Kimberley, Nov 03 2011

Formula

a(n) = sum of the n-th row of A068934.
a(n) = A165647(n) - A165648(n).
This sequence is the inverse Euler transformation of A165647.

Extensions

More terms from David Wasserman, Mar 08 2002
a(15) from Giovanni Resta, Feb 05 2009
Terms are sums of the output from M. Meringer's genreg software. To complete a(16) it was run by Jason Kimberley, Sep 23 2009
a(0)=1 (due to the empty graph being vacuously connected and regular) inserted by Jason Kimberley, Apr 11 2012
a(17)-a(21) from Andrew Howroyd, Mar 10 2020
a(22)-a(24) from Andrew Howroyd, May 19 2020

A002905 Number of connected graphs with n edges.

Original entry on oeis.org

1, 1, 1, 3, 5, 12, 30, 79, 227, 710, 2322, 8071, 29503, 112822, 450141, 1867871, 8037472, 35787667, 164551477, 779945969, 3804967442, 19079312775, 98211456209, 518397621443, 2802993986619, 15510781288250, 87765472487659, 507395402140211, 2994893000122118, 18035546081743772, 110741792670074054, 692894304050453139
Offset: 0

Views

Author

Keywords

Examples

			a(3) = 3 since the three connected graphs with three edges are a path, a triangle and a "Y".
The first difference between this sequence and A046091 is for n=9 edges where we see K_{3,3}, the well-known "utility graph".
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column sums of A054924 or equivalently row sums of A054923.
Cf. A000664, A046091 (for connected planar graphs), A275421 (multisets).
Apart from a(3), same as A003089.

Programs

Formula

A000664 and this sequence are an Euler transform pair. - N. J. A. Sloane, Aug 30 2016

Extensions

More terms from Vladeta Jovovic, Jan 12 2000
More terms from Gordon F. Royle, Jun 05 2003
a(25)-a(26) from Max Alekseyev, Sep 19 2009
a(27)-a(60) from Max Alekseyev, Sep 07 2016

A003094 Number of unlabeled connected planar simple graphs with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 6, 20, 99, 646, 5974, 71885, 1052805, 17449299, 313372298, 5942258308
Offset: 0

Views

Author

Keywords

Comments

Inverse Euler transform of A005470. - Christian G. Bower, May 16 2003

Examples

			a(3) = 2 since the path o-o-o and the triangle are the two connected planar simple graphs on three nodes.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. J. Wilson, Introduction to Graph Theory, Academic Press, NY, 1972, p. 162.

Crossrefs

Row sums of A049334.
The labeled version is A096332.

Programs

  • Mathematica
    a[n_Integer?NonNegative] := a[n] = Module[{m, s, g}, s = Subsets[Range[n], {2}]; m = Length[s]; g = Graph[Range[n], UndirectedEdge @@@ #] & /@ (Pick[s, #, 1] & /@ (IntegerDigits[#, 2, m] & /@ Range[0, 2^m - 1])); Length[DeleteDuplicates[Select[Select[g, ConnectedGraphQ], PlanarGraphQ], IsomorphicGraphQ]]]; Table[a[n], {n, 0, 6}] (* Robert P. P. McKone, Oct 14 2023 *)
  • nauty
    geng -c $n | planarg -q | countg -q # Georg Grasegger, Jul 06 2023

Extensions

More terms from Brendan McKay
a(12) added by Brendan McKay, Dec 06 2014
a(13) added by Georg Grasegger, Jul 06 2023

A000568 Number of outcomes of unlabeled n-team round-robin tournaments.

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 56, 456, 6880, 191536, 9733056, 903753248, 154108311168, 48542114686912, 28401423719122304, 31021002160355166848, 63530415842308265100288, 244912778438520759443245824, 1783398846284777975419600287232, 24605641171260376770598003978281472
Offset: 0

Views

Author

Keywords

Comments

Harary and Palmer give incorrect values for a(24) and a(25); the correct values are a(24) = 195692027657521876084316842660833482785173437775365039898624 and a(25) = 131326696677895002131450257709457767457170027052967027982788816896. - Vladeta Jovovic, Apr 08 2001
a(n) appears to be the number of even graphs with n vertices; see comment in A334335. - Pontus von Brömssen, May 05 2020 [This has been proved by Royle et al. 2023. - Pontus von Brömssen, Apr 06 2022]

References

  • R. L. Davis, Structure of dominance relations, Bull. Math. Biophys., 16 (1954), 131-140.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 157 and 523.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 126 and 245.
  • J. W. Moon, Topics on Tournaments. Holt, NY, 1968, p. 87.
  • K. B. Reid and L. W. Beineke "Tournaments", pp. 169-204 in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006125 for the labeled analog, A051337.
Euler transform of A334335.

Programs

  • Maple
    with(combinat):with(numtheory): for n from 1 to 30 do p:=partition(n): s:=0:for k from 1 to nops(p) do ex:=1:for i from 1 to nops(p[k]) do if p[k][i] mod 2=0 then ex:=0:break:fi:od:
    if ex=1 then q:=convert(p[k],multiset): for i from 1 to n do a(i):=0:od:for i from 1 to nops(q) do a(q[i][1]):=q[i][2]:od:
    c:=1:ord:=1:for i from 1 to n do c:=c*a(i)!*i^a(i): if a(i)<>0 then ord:=lcm(ord,i):fi:od: g:=0:for d from 1 to ord do if ord mod d=0 then g1:=0:for del from 1 to n do if d mod del=0 then g1:=g1+del*a(del):fi:od:g:=g+phi(ord/d)*g1*(g1-1):fi:od: s:=s+2^(g/ord/2)/c:fi:
    od: print(n,s); od: # Vladeta Jovovic
  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i-1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}];
    oddp[v_] := (For[i = 1, i <= Length[v], i++, If[BitAnd[v[[i]], 1] == 0, Return[0]]]; 1);
    a[n_] := a[n] = (s = 0; Do[If[oddp[p] == 1, s += permcount[p]*2^edges[p]], {p, IntegerPartitions[n]}]; s/n!);
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 13 2017, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    oddp(v) = {for(i=1, #v, if(bitand(v[i],1)==0, return(0)));1}
    a(n) = {my(s=0); forpart(p=n, if(oddp(p), s+=permcount(p)*2^edges(p))); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import product
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000568(n): return int(sum(Fraction(1<<(sum(p[r]*p[s]*gcd(r,s) for r,s in product(p.keys(),repeat=2))-sum(p.values())>>1),prod(q**p[q]*factorial(p[q]) for q in p)) for p in partitions(n) if all(q&1 for q in p))) # Chai Wah Wu, Jul 01 2024

Formula

Davis's formula: a(n) = Sum_{j} (1/(Product (k^(j_k) (j_k)!))) * 2^{t_j},
where j runs through all partitions of n into odd parts, say with j_1 parts of size 1, j_3 parts of size 3, etc.,
and t_j = (1/2)*[ Sum_{r=1..n, s=1..n} j_r j_s gcd(r,s) - Sum_{r} j_r ].

Extensions

More terms from Vladeta Jovovic
Previous Showing 11-20 of 83 results. Next